Digital Terrain Analysis in Soil Science and Geology


Book Description

Digital Terrain Analysis in Soil Science and Geology, Second Edition, synthesizes the knowledge on methods and applications of digital terrain analysis and geomorphometry in the context of multi-scale problems in soil science and geology. Divided into three parts, the book first examines main concepts, principles, and methods of digital terrain modeling. It then looks at methods for analysis, modeling, and mapping of spatial distribution of soil properties using digital terrain analysis, before finally considering techniques for recognition, analysis, and interpretation of topographically manifested geological features. Digital Terrain Analysis in Soil Science and Geology, Second Edition, is an updated and revised edition, providing both a theoretical and methodological basis for understanding and applying geographical modeling techniques. - Presents an integrated and unified view of digital terrain analysis in both soil science and geology - Features research on new advances in the field, including DEM analytical approximation, analytical calculation of local morphometric variables, morphometric globes, and two-dimensional generalized spectral analytical methods - Includes a rigorous description of the mathematical principles of digital terrain analysis - Provides both a theoretical and methodological basis for understanding and applying geographical modeling




Digital Terrain Analysis in Soil Science and Geology


Book Description

"This book is the first attempt to synthesize knowledge on theory, methods, and applications of digital terrain analysis in the context of multiscale problems of soil science and geology. The content of the book is based on long-standing, interdisciplinary research of the author. The book is addressed to geomorphometrists, soil scientists, geologists, geoscientists, geomorphologists, geographers, and GIS scientists (at scholar, lecturer, and postgraduate student levels, with mathematical skills). This book is also intended for the GIS professionals in industry and research laboratories focusing on geoscientific and soil research. The book is divided into three parts. Part I represents main concepts, principles, and methods of digital terrain modeling. Part II discusses various aspects of the use of digital terrain analysis in soil science. Part III looks at applications of digital terrain modeling in geology"--




Terrain Analysis


Book Description

Dieses Buch untersucht, welchen Einfluß Landschaftsformen, insbesondere Höhenunterschiede, auf die an der Erdoberfläche ablaufenden Prozesse haben. Wasserbewegungen, die Sonneneinstrahlung sowie die Bodenentwicklung und -erosion werden alle mehr oder minder durch die Form der Landschaftsoberfläche gesteuert. Die Anwendungsmöglichkeiten der Landschaftsanalyse sind vielfältig: Sie reichen von Studien über Wasserscheiden und Feuchtgebiete über Bodenkunde und Erosionsstudien, Landschafts- und Landnutzungsstudien bis zu geomorphologischer Forschung und regionalen und globalen Ökologiestudien. Darüber hinaus kann die Landschaftsanalyse auch zu meteorologischen Vorhersagen sowie bei Problemen mit TV- oder Radiosignalempfang eingesetzt werden. Dieses Forschungsgebiet hat in Verbindung mit den jüngsten Fortschritten auf dem Gebiet der GIS und GPS eine rasante Entwicklung durchlaufen. In diesem Band werden alle diese neuen Ansätze und Anwendungsbereiche umfassend erläutert. (y05/00)




Digital Terrain Modeling


Book Description

Written by experts, Digital Terrain Modeling: Principles and Methodology provides comprehensive coverage of recent developments in the field. The topics include terrain analysis, sampling strategy, acquisition methodology, surface modeling principles, triangulation algorithms, interpolation techniques, on-line and off-line quality control in data a




Environmental Applications of Digital Terrain Modeling


Book Description

A digital elevation model (DEM) is a digital representation of ground surface topography or terrain. It is also widely known as a digital terrain model (DTM). A DEM can be represented as a raster (a grid of squares) or as a vector based triangular irregular network (TIN). DEMs are commonly built using remote sensing techniques, but they may also be built from land surveying. DEMs are used often in geographic information systems, and are the most common basis for digitally-produced relief maps. The terrain surface can be described as compromising of two different elements; random and systematic. The random (stochastic) elements are the continuous surfaces with continuously varying relief. It would take an endless number of points to describe exactly the random terrain shapes, but these can be described in practice with a network of point. It is usual to use a network that creates sloping triangles or regular quadrants. This book examines how the methods and data sources used to generate DEMs and calculate land surface parameters have changed over the past 25 years. The primary goal is to describe the state-of-the-art for a typical digital terrain modeling workflow that starts with data capture, continues with data preprocessing and DEM generation, and concludes with the calculation of one or more primary and secondary land surface parameters. Taken as a whole, this book covers the basic theory behind the methods, the instrumentation, analysis and interpretation that are embedded in the modern digital terrain modeling workflow, the strengths and weaknesses of the various methods that the terrain analyst must choose among, typical applications of the results emanating from these terrain modeling workflows, and future directions. This book is intended for researchers and practitioners who wish to use DEMs, land surface parameters, land surface objects and landforms in environmental projects. The book will also be valuable as a reference text for environmental scientists who are specialists in related fields and wish to integrate these kinds of digital terrain workflows and outputs into their own specialized work environments.




Journal of Soil and Water Conservation


Book Description

Vol. 25, no. 1 contains the society's Lincoln Chapter's Resource conservation glossary.




A Guide to Forensic Geology


Book Description

Forensic geology is the application of geology to aid the investigation of crime. A Guide to Forensic Geology was written by the International Union of Geological Sciences (IUGS), Initiative on Forensic Geology (IFG), which was established to promote and develop forensic geology around the world. This book presents the first practical guide for forensic geologists in search and geological trace evidence analysis. Guidance is provided on using geological methods during search operations. This developed following international case work experiences and research over the last 25 years for homicide graves, burials associated with serious and organised crime and counter terrorism. With expertise gained in over 300 serious crime investigations, the guidance also considers geological trace evidence, including the examination of crime scenes, geological evidence recovery and analysis from exhibits and the reporting of results. The book also considers the judicial system, reporting and requirements for presenting evidence in court. Included are emerging applications of geology to police and law enforcement: illegal and illicit mining, conflict minerals, substitution, adulteration, fraud and fakery.




Geomorphological Techniques


Book Description

The specialist contributors to Geomorphological Techniques have thoroughly augmented and updated their original, authoritative coverage with critical evaluations of major recent developments in this field. A new chapter on neotectonics reflects the impact of developments in tectonic theory, and heavily revised sections deal with advances in remote sensing, image analysis, radiometric dating, geomorphometry, data loggers, radioactive tracers, and the determination of pore water pressure and the rates of denudation.




GlobalSoilMap


Book Description

GlobalSoilMap: Basis of the global spatial soil information system contains contributions that were presented at the 1st GlobalSoilMap conference, held 7-9 October 2013 in Orléans, France. These contributions demonstrate the latest developments in the GlobalSoilMap project and digital soil mapping technology for which the ultimate aim is to produce a high resolution digital spatial soil information system of selected soil properties and their uncertainties for the entire world. GlobalSoilMap: Basis of the global spatial soil information system aims to stimulate capacity building and new incentives to develop full GlobalSoilMap products in all parts of the world.




Digital Terrain Analysis, Third Edition


Book Description

Digital Terrain Analysis, Third Edition, synthesizes the knowledge on methods and applications of digital terrain analysis and geomorphometry in the context of multi-scale problems in soil science, geology, and polar research. Divided into four parts, the book examining the main concepts, principles, and methods of digital terrain modeling; methods for analysis, modeling, and mapping of spatial distribution of soil properties; techniques for recognition, analysis, and interpretation of topographically manifested geological features; and finally the brand new fourth part investigates polar research. Digital Terrain Analysis, Third Edition, is an updated and revised edition, providing both a theoretical and methodological basis for understanding and applying geographical modeling techniques. - Presents an integrated and unified view of digital terrain analysis in both soil science and geology - Includes a rigorous description of the mathematical principles of digital terrain analysis - Provides both a theoretical and methodological basis for understanding and applying geographical modeling - Adds a brand new section on Digital Terrain Modeling in polar research, as well as updated information, methods and figures from previous edition chapters