Dimethylfuran Production Process - Cost Analysis - DMF E11A


Book Description

This report presents a cost analysis of an early stage process for Dimethylfuran (DMF) production from glucose syrup. The process examined is similar to the one proposed by the University of Wisconsin-Madison. In this process, glucose is isomerized to fructose, which is dehydrated forming hydroxymethylfurfural (HMF) intermediate. Then, HMF is converted to DMF. This report was developed based essentially on the following reference(s): Keywords: Glucose Isomerization, Dehydration, Biphasic Reactor




Hydroxymethylfurfural Production Process - Cost Analysis - HMF E11A


Book Description

This report presents a cost analysis of an early stage process for Hydroxymethylfurfural (HMF) production from glucose syrup. The process examined is similar to the one proposed by the University of Wisconsin-Madison. In this process, glucose is isomerized to fructose, which is then converted to Hydroxymethylfurfural (HMF). This report was developed based essentially on the following reference(s): US Patent 20080033188, issued to Wisconsin Alumni Research Institute in 2008 Keywords: Glucose Isomerization, Dehydration, Biphasic Reactor




Methyl Chloride Production Process - Cost Analysis - Methyl Chloride E11A


Book Description

This report presents a cost analysis of Methyl Chloride production from methanol and hydrogen chloride. The process examined is a typical catalytic vapor phase process. In this process, methanol and anhydrous HCl are combined in vapor phase and passed through a catalyst bed. Reactor vapor outlet is quenched, dried by sulfuric acid scrubbing and then purified to generate high-purity Methyl Chloride. This report was developed based essentially on the following reference(s): (1) "Chloromethanes", Ullmann's Encyclopedia of Industrial Chemistry, 2012; (2) Handbook of Industrial Chemistry and Biotechnology, 2012 Keywords: Chloromethane, R-40, HCC-40, chlorosilanes production




Contemporary Catalysis


Book Description

Contemporary Catalysis: Fundamentals and Current Applications deals with the fundamentals and modern practical applications of catalysis. Topics addressed include historical development and the importance of heterogeneous catalysis in the modern world, surfaces and adsorption, the catalyst (preparation and characterization), the reactor (integral and differential reactors, etc.), and an introduction to spectroscopic and thermal characterization techniques. Building on this foundation, the book continues with chapters on important industrial processes, potential processes and separate chapters on syngas production, Fischer Tropsch synthesis, petroleum refining, environmental protection, and biomass conversion. Contemporary Catalysis is an essential resource for chemists, physical chemists, and chemical engineers, as well as graduate and post graduate students in catalysis and reaction engineering. - Covers all aspects of catalysis in a carefully organized text - Includes material on historical development - Provides a wide range of student tasks, case studies, and supplementary, web-based materials that are regularly updated




Biofuel Crops


Book Description

Providing comprehensive coverage on biofuel crop production and the technological, environmental and resource issues associated with a sustainable biofuel industry, this book is ideal for researchers and industry personnel. Beginning with an introduction to biofuels and the challenges they face, the book then includes detailed coverage on crops of current importance or with high future prospects, including sections on algae, sugar crops and grass, oil and forestry species. The chapters focus on the genetics, breeding, cultivation, harvesting and handling of each crop.




The Biofuels Handbook


Book Description

This timely handbook describes the options available for the production of synthetic fuels from biological sources. An essential reference source for researchers in academia as well as industry.




Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications


Book Description

Advanced Fibre-reinforced Polymer (FRP) Composites for Structural Applications, Second Edition provides updates on new research that has been carried out on the use of FRP composites for structural applications. These include the further development of advanced FRP composites materials that achieve lighter and stronger FRP composites, how to enhance FRP integrated behavior through matrix modification, along with information on pretension treatments and intelligence technology. The development of new technology such as automated manufacturing and processing of fiber-reinforced polymer (FRP) composites have played a significant role in optimizing fabrication processing and matrix formation. In this new edition, all chapters have been brought fully up-to-date to take on the key aspects mentioned above. The book's chapters cover all areas relevant to advanced FRP composites, from the material itself, its manufacturing, properties, testing and applications in structural and civil engineering. Applications span from civil engineering, to buildings and the energy industry. - Covers all areas relevant to advanced FRP composites, from the material itself, its manufacturing, properties, testing and applications in structural engineering - Features new manufacturing techniques, such as automated fiber placement and 3D printing of composites - Includes various applications, such as prestressed-FRP, FRP made of short fibers, continuous structural health monitoring using advanced optical fiber Bragg grating (FBG), durability of FRP-strengthened structures, and the application of carbon nano-tubes or platelets for enhancing durability of FRP-bonded structures




Biofuel Production Technologies: Critical Analysis for Sustainability


Book Description

Production and utilization of sustainable energy toward maintaining a clean environment is a major challenge. At the same time, the continued depletion of fossil fuels and the global dependency on non-renewable fuels is a chief concern. Moreover, the long-term economic and environmental issues associated with the high utilization of fossil fuel, such as global warming, are also important, particularly in the context of the predicted increase in the global population to around 5 billion by 2050. In recent years, researchers have been investigating alternative, renewable fuels to replace fossil fuels. Of the various options, biofuels are especially attractive due to their low production costs and the fact that they are pollution free. Also known as transportation fuels, their energy is derived from biological resources or through the biological processes. Biofuels such as biohydrogen, biomethane, biogas, ethanol and butanol offer a number of advantages and can be economically produced from cellulosic biomass. As such, they can play a vital role in sustainably meeting future energy demands. Biofuels have the potential to become a global primary energy source, offering significant reductions in greenhouse gas emissions as well as opportunities to increase economic and social development in rural communities and reduce the problems associated with waste disposal. However, low yields and lack of process technology are some of the aspects that need to be addressed. This book offers an overview of existing biofuels and the technologies to solve the problems associated with their practical implementation. Evaluating the biofuel options and discussing the opportunities and risks in relation to resources, technologies, practices, markets and policy, it provides insights into the development of economically viable bioenergy industries.







Reaction Kinetics and the Development of Catalytic Processes


Book Description

The symposium "Reaction Kinetics and the Development of Catalytic Processes" is the continuation of the very successful International Symposium "Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis", held in September 1997 in Antwerp, Belgium. These proceedings contain a unique series of top level plenary lectures mainly focused on• the dynamics of catalytic surfaces• the interaction of the reacting molecules with the solid catalyst• the elementary steps of reaction pathways and molecular kinetics.Surface science techniques, molecular modeling, transient kinetic studies, sophisticated and specific reactors are included to a growing extent in the kinetic modeling and the development of catalytic processes. How this is practiced today and how it will evolve in the coming years, and what benefit can be expected for a more fundamentally based approach is the aim of the symposium.