Dual-Fuel Diesel Engines


Book Description

Dual-Fuel Diesel Engines offers a detailed discussion of different types of dual-fuel diesel engines, the gaseous fuels they can use, and their operational practices. Reflecting cutting-edge advancements in this rapidly expanding field, this timely book:Explains the benefits and challenges associated with internal combustion, compression ignition,




Advanced Direct Injection Combustion Engine Technologies and Development


Book Description

Direct injection enables precise control of the fuel/air mixture so that engines can be tuned for improved power and fuel economy, but ongoing research challenges remain in improving the technology for commercial applications. As fuel prices escalate DI engines are expected to gain in popularity for automotive applications. This important book, in two volumes, reviews the science and technology of different types of DI combustion engines and their fuels. Volume 1 deals with direct injection gasoline and CNG engines, including history and essential principles, approaches to improved fuel economy, design, optimisation, optical techniques and their applications. - Reviews key technologies for enhancing direct injection (DI) gasoline engines - Examines approaches to improved fuel economy and lower emissions - Discusses DI compressed natural gas (CNG) engines and biofuels




Natural Gas Engines


Book Description

This book covers the various advanced reciprocating combustion engine technologies that utilize natural gas and alternative fuels for transportation and power generation applications. It is divided into three major sections consisting of both fundamental and applied technologies to identify (but not limited to) clean, high-efficiency opportunities with natural gas fueling that have been developed through experimental protocols, numerical and high-performance computational simulations, and zero-dimensional, multizone combustion simulations. Particular emphasis is placed on statutes to monitor fine particulate emissions from tailpipe of engines operating on natural gas and alternative fuels.




High-pressure Direct-injection of Natural Gas with Entrained Diesel Into a Compression-ignition Engine


Book Description

The high-pressure direct-injection (HPDI) of natural gas in a compression ignition engine has the potential to reduce demand for petroleum derived fuels and significantly reduce the level of pollutants and greenhouse gases emitted from heavy duty transport vehicles. A new HPDI injector was tested where diesel is injected into a gas/diesel reservoir in the injector and the diesel and gas are then co-injected into the combustion chamber. In order to identify interactions between the diesel and gas in the reservoir, two different injector geometries were tested: prototypes A and B. Prototype B had reduced reservoir volume to increase gas velocity inside the injector. A majority of the tests were conducted in a single-cylinder test engine derived from a Cummins ISX diesel engine. As prototype A was being modified to create Prototype B this test engine was moved to a larger test cell. After updating the electrical, mechanical, and safety systems, the test engine in the new test cell was found to run repeatably; however, emissions comparisons between both test cells was not possible due to different analyzers being used. Single gas and double gas injections were conducted for both injector prototypes. The single gas injection tests found that increasing the diesel injection mass reduced the mass of gas injected. Increased diesel injection mass also shortened ignition delay, reduced unburned and partially burned fuel and increased NOx emissions. Holding the diesel injection mass constant and reducing the gas injection mass had the same effect as increasing diesel on ignition delay and gaseous emissions. If the diesel injection mass was kept constant and a second gas injection was added, the heat release due to the first injection decreased and the start of combustion was retarded. This appears to have occurred because some of the diesel was carried into the cylinder by the second injection and less diesel was available in the first injection to promote ignition. Double gas.




Alternative Diesel Fuels


Book Description

A key topic of many technical discussions has been the development of alternative fuels to power the compression ignition engine. Reasons for this include the desire to reduce the dependency on petroleum-based fuel and, at the same time, to reduce the particulate matter (PM) and NOx emissions. Also, there has been interest generated in the diesel engine because of the reduction in greenhouse gases that has been proposed during the 2008-2012 time frame in Europe and the regulations that affect diesel engines in the United States.




Spark Plug Fuel Direct Injection Natural Gas Engine


Book Description

Natural gas has been extensively used in automotive engines due to its abundance availability, adaptability to existing engine design, cleaner emission and competitive price. However, converting engine to natural gas always results in power drop. One of the most practical solutions is direct fuel injection. Research on natural gas direct injection engines proved that engine power similar to gasoline is achievable but with the penalty of engine retrofitting costs (cooling water jacket and piston crown modification). Spark Plug Fuel Direct Injection (SPFI) offers a cost competitive and a technically simpler option for conversion to natural gas direct injection. This book explore the development of SPFI and initial engine test which was carried out in a single cylinder engine. Encouraging results were obtained and more work are being carried out for its design and operational optimization. Stay tuned for its technological progress.




Flame Propagation in Natural Gas Fueled Direct Injection Engines [microform]


Book Description

Natural gas has shown promise as an alternative fuel for diesel engines. Research has shown that natural gas requires assistance to ignite in a diesel engine chamber. This results in a single site of ignition from which the flame must propagate to other jets in the injection pattern. The goal of this work was to determine what factors affect how the flame propagates from this initial ignition site to the remaining unburned mixture. The combustion of natural gas jets under diesel engine conditions was studied over a range of temperatures, pressures, equivalence ratios, and glow plug shield designs using a rapid compression device. Ignition was provided by a shielded glow plug. The results show that of all the factors considered the geometry of the injection pattern, chamber, and glow plug shield are most dominant in controlling combustion rates and efficiency.