Numerical and Physical Aspects of Aerodynamic Flows IV


Book Description

This volume contains a selection of the papers presented at the Fourth Symposium on Numerical and Physical Aspects of Aerodynamic Flows, which was held at the California State University, Long Beach, from 16-19 January 1989. It includes the Stewartson Memorial Lecture of Professor J. H. Whitelaw, and is divided into three parts. The first is a collection of papers that describe the status of current technology in two- and three-dimensional steady flows, the second deals with two- and three-dimensional unsteady flows, and the papers in the third address stability and transition. Each of the three parts begins with an overview of current research, as described in the following chapters. The individual papers are edited versions of the selected papers originally submitted to the symposium. Four years have passed since the Third Symposium, and certain trends be come clear if one compares the papers contained in this volume with those of previous volumes. There are more three- than two-dimensional problems consid ered in Part 1 and the latter address more difficult problems than in the past, for example, the extension to higher angles of attack, to transonic flow, to leading edge ice accretion, and to thick hydrofoils. The large number of papers in the first part reflects the emphasis of current research and development and the needs of industry.







Vorticity and Vortex Dynamics


Book Description

This book is a comprehensive and intensive monograph for scientists, engineers and applied mathematicians, as well as graduate students in fluid dynamics. It starts with a brief review of fundamentals of fluid dynamics, with an innovative emphasis on the intrinsic orthogonal decomposition of fluid dynamic process, by which one naturally identifies the content and scope of vorticity and vortex dynamics. This is followed by a detailed presentation of vorticity dynamics as the basis of later development. In vortex dynamics part the book deals with the formation, motion, interaction, stability, and breakdown of various vortices. Typical vortex structures are analyzed in laminar, transitional, and turbulent flows, including stratified and rotational fluids. Physical understanding of vertical flow phenomena and mechanisms is the first priority throughout the book. To make the book self-contained, some mathematical background is briefly presented in the main text, but major prerequisites are systematically given in appendices. Material usually not seen in books on vortex dynamics is included, such as geophysical vortex dynamics, aerodynamic vortical flow diagnostics and management.










Turbulence: Numerical Analysis, Modelling and Simulation


Book Description

This book is a printed edition of the Special Issue "Turbulence: Numerical Analysis, Modelling and Simulation" that was published in Fluids




Rotating Flow


Book Description

Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows.Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries.Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows—which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circulations included to help deepen understanding.Whilst competing resources are weighed down with complex mathematics, this book focuses on the essential equations and provides full workings to take readers step-by-step through the theory so they can concentrate on the practical applications. - A detailed yet accessible introduction to rotating flows, illustrating the differences between flows where rotation is significant and highlighting the non-intuitive nature of rotating flow fields - Written by world-leading authority on rotating flow, Peter Childs, making this a unique and authoritative work - Covers the essential theory behind engineering applications such as rotating discs, cylinders, and cavities, with natural phenomena such as atmospheric and oceanic flows used to explain underlying principles - Provides a rigorous, fully worked mathematical account of rotating flows whilst also including numerous practical examples in daily life to highlight the relevance and prevalence of different flow types - Concise summaries of the results of important research and lists of references included to direct readers to significant further resources




Vortex Dynamics


Book Description

Vortex dynamics is a natural paradigm for the field of chaotic motion and modern dynamical system theory. However, this volume focuses on those aspects of fluid motion that are primarily controlled by the vorticity and are such that the effects of the other fluid properties are secondary.




New Developments in Computational Fluid Dynamics


Book Description

Contains 20 papers presented at the Sixth International Nobeyama Workshop on the New Century of Computational Fluid Dynamics, Nobeyama, Japan, April 21-24, 2003. These papers cover computational electromagnetics, astrophysical topics, CFD research and applications in general, large-eddy simulation, mesh generation topics, visualization, and more.