Directed Enzyme Evolution


Book Description

Directed evolution comprises two distinct steps that are typically applied in an iterative fashion: (1) generating molecular diversity and (2) finding among the ensemble of mutant sequences those proteins that perform the desired fu- tion according to the specified criteria. In many ways, the second step is the most challenging. No matter how cleverly designed or diverse the starting library, without an effective screening strategy the ability to isolate useful clones is severely diminished. The best screens are (1) high throughput, to increase the likelihood that useful clones will be found; (2) sufficiently sen- tive (i. e. , good signal to noise) to allow the isolation of lower activity clones early in evolution; (3) sufficiently reproducible to allow one to find small improvements; (4) robust, which means that the signal afforded by active clones is not dependent on difficult-to-control environmental variables; and, most importantly, (5) sensitive to the desired function. Regarding this last point, almost anyone who has attempted a directed evolution experiment has learned firsthand the truth of the dictum “you get what you screen for. ” The protocols in Directed Enzyme Evolution describe a series of detailed p- cedures of proven utility for directed evolution purposes. The volume begins with several selection strategies for enzyme evolution and continues with assay methods that can be used to screen enzyme libraries. Genetic selections offer the advantage that functional proteins can be isolated from very large libraries s- ply by growing a population of cells under selective conditions.




Directed Enzyme Evolution: Advances and Applications


Book Description

This book focuses on some of the most significant advances in enzyme engineering that have been achieved through directed evolution and hybrid approaches. On the 25th anniversary of the discovery of directed evolution, this volume is a tribute to the pioneers of this thrilling research field, and at the same time provides a comprehensive overview of current research and the state of the art. Directed molecular evolution has become the most reliable and robust method to tailor enzymes, metabolic pathways or even whole microorganisms with improved traits. By mirroring the Darwinian algorithm of natural selection on a laboratory scale, new biomolecules of invaluable biotechnological interest can now be engineered in a manner that surpasses the boundaries of nature. The volume is divided into two sections, the first of which provides an update on recent successful cases of enzyme ensembles from different areas of the biotechnological spectrum, including tryptophan synthases, unspecific peroxygenases, phytases, therapeutic enzymes, stereoselective enzymes and CO2-fixing enzymes. This section also provides information on the directed evolution of whole cells. The second section of the book summarizes a variety of the most applicable methods for library creation, together with the future trends aimed at bringing together directed evolution and in silico/computational enzyme design and ancestral resurrection.




Directed Evolution Library Creation


Book Description

Biological systems are very special substrates for engineering—uniquely the products of evolution, they are easily redesigned by similar approaches. A simple algorithm of iterative cycles of diversification and selection, evolution works at all scales, from single molecules to whole ecosystems. In the little more than a decade since the first reported applications of evolutionary design to enzyme engineering, directed evolution has matured to the point where it now represents the centerpiece of industrial biocatalyst development and is being practiced by thousands of academic and industrial scientists in com- nies and universities around the world. The appeal of directed evolution is easy to understand: it is conceptually straightforward, it can be practiced without any special instrumentation and, most important, it frequently yields useful solutions, many of which are totally unanticipated. Directed evolution has r- dered protein engineering readily accessible to a broad audience of scientists and engineers who wish to tailor a myriad of protein properties, including th- mal and solvent stability, enzyme selectivity, specific activity, protease s- ceptibility, allosteric control of protein function, ligand binding, transcriptional activation, and solubility. Furthermore, the range of applications has expanded to the engineering of more complex functions such as those performed by m- tiple proteins acting in concert (in biosynthetic pathways) or as part of mac- molecular complexes and biological networks.




Directed Evolution of Selective Enzymes


Book Description

Authored by one of the world's leading organic chemists, this authoritative reference provides an overview of basic strategies in directed evolution and introduces common gene mutagenesis, screening and selection methods. Throughout the text, emphasis is placed on methodology development to maximize efficiency, reliability and speed of the experiments and to provide guidelines for efficient protein engineering. Professor Reetz highlights the application of directed evolution experiments to address limitations in the field of enzyme selectivity, substrate scope, activity and robustness. He critically reviews recent developments and case studies, takes a look at future applications in the field of organic synthesis, and concludes with lessons learned from previous experiments.




Protein Engineering


Book Description

A one-stop reference that reviews protein design strategies to applications in industrial and medical biotechnology Protein Engineering: Tools and Applications is a comprehensive resource that offers a systematic and comprehensive review of the most recent advances in the field, and contains detailed information on the methodologies and strategies behind these approaches. The authors—noted experts on the topic—explore the distinctive advantages and disadvantages of the presented methodologies and strategies in a targeted and focused manner that allows for the adaptation and implementation of the strategies for new applications. The book contains information on the directed evolution, rational design, and semi-rational design of proteins and offers a review of the most recent applications in industrial and medical biotechnology. This important book: Covers technologies and methodologies used in protein engineering Includes the strategies behind the approaches, designed to help with the adaptation and implementation of these strategies for new applications Offers a comprehensive and thorough treatment of protein engineering from primary strategies to applications in industrial and medical biotechnology Presents cutting edge advances in the continuously evolving field of protein engineering Written for students and professionals of bioengineering, biotechnology, biochemistry, Protein Engineering: Tools and Applications offers an essential resource to the design strategies in protein engineering and reviews recent applications.




In the Light of Evolution


Book Description

The Arthur M. Sackler Colloquia of the National Academy of Sciences address scientific topics of broad and current interest, cutting across the boundaries of traditional disciplines. Each year, four or five such colloquia are scheduled, typically two days in length and international in scope. Colloquia are organized by a member of the Academy, often with the assistance of an organizing committee, and feature presentations by leading scientists in the field and discussions with a hundred or more researchers with an interest in the topic. Colloquia presentations are recorded and posted on the National Academy of Sciences Sackler colloquia website and published on CD-ROM. These Colloquia are made possible by a generous gift from Mrs. Jill Sackler, in memory of her husband, Arthur M. Sackler.




Enzyme Engineering and Evolution: General Methods


Book Description

This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Methods in Enzymology series




Industrial Biocatalysis


Book Description

Biocatalysis has become an essential tool in the chemical industry and is the core of industrial biotechnology, also known as white biotechnology, making use of biocatalysts in terms of enzymes or whole cells in chemical processes as an alternative to chemical catalysts. This shift can be seen in the many areas of daily life where biocatalysts-with




The Role of Behavior in Evolution


Book Description

These six original essays focus on a potentially important aspect of evolutionary biology, the possible causal role of phenotypic behavior in evolution. Balancing theory with actual or potential empiricism, they provide the first full examination of this topic. Plotkin's opening chapter outlines the "conceptual minefields" that the contributors attempt to negotiate: What is an adequate theory of evolution? What is behavior and is it possible to maintain a distinction between behavior and other attributes of the phenotype? is all, or only a special subset, of behavior both a cause and a consequence of evolution? And what do the theoretical issues mean in empirical terms? He concludes that any attempt to understand the causal role of behavior in evolution requires a more complicated theoretical structure than that of orthodox neoDarwinism, a conceptualization of behavior as a distinctive set of phenotypic attributes, and the accumulation of more data. David L. Hull (Northwestern University) provides an alternative account of the evolutionary process by developing a hierarchy of replicators-interactors-lineages to replace the traditional one of genes-organisms-species. Robert N. Brandon (Duke University) also posits hierarchy as an appropriate architecture for the theoretical complexity needed to support an examination of the role of behavior in evolution. F. J. Odling-Smee (Brunei University) outlines a theoretical structure to encompass the behavior of phenotypes, concentrating on the unrestricted definition of behavior (everything that an animal does). The remaining chapters are as much concerned with evidence as with theory. Plotkin concentrates on a restricted definition of behavior (behavior that is a product of choosing intelligence), reviewing our empirical knowledge of how learning might influence evolution. R.I.M. Dunbar (University College, London) uses empirical studies of vertebrate social behavior to deal with the question of how the social systems, especially of primates, might have a causal role in species evolution. A Bradford Book




Development and Evolution


Book Description

Development and Evolution surveys and illuminates the key themes of rapidly changing fields and areas of controversy that the redefining the theory and philosophy of biology. It continues Stanley Salthe's investigation of evolutionary theory, begun in his influential book Evolving Hierarchical Systems, while negating the implicit philosophical mechanisms of much of that work. Here Salthe attempts to reinitiate a theory of biology from the perspective of development rather than from that of evolution, recognizing the applicability of general systems thinking to biological and social phenomena and pointing towards a non-Darwinian and even a postmodern biology.