Discovering Higher Mathematics


Book Description

Funded by a National Science Foundation grant, Discovering Higher Mathematics emphasizes four main themes that are essential components of higher mathematics: experimentation, conjecture, proof, and generalization. The text is intended for use in bridge or transition courses designed to prepare students for the abstraction of higher mathematics. Students in these courses have normally completed the calculus sequence and are planning to take advanced mathematics courses such as algebra, analysis and topology. The transition course is taken to prepare students for these courses by introducing them to the processes of conjecture and proof concepts which are typically not emphasized in calculus, but are critical components of advanced courses. * Constructed around four key themes: Experimentation, Conjecture, Proof, and Generalization * Guidelines for effective mathematical thinking, covering a variety of interrelated topics * Numerous problems and exercises designed to reinforce the key themes




Discovering Group Theory


Book Description

Discovering Group Theory: A Transition to Advanced Mathematics presents the usual material that is found in a first course on groups and then does a bit more. The book is intended for students who find the kind of reasoning in abstract mathematics courses unfamiliar and need extra support in this transition to advanced mathematics. The book gives a number of examples of groups and subgroups, including permutation groups, dihedral groups, and groups of integer residue classes. The book goes on to study cosets and finishes with the first isomorphism theorem. Very little is assumed as background knowledge on the part of the reader. Some facility in algebraic manipulation is required, and a working knowledge of some of the properties of integers, such as knowing how to factorize integers into prime factors. The book aims to help students with the transition from concrete to abstract mathematical thinking.




Groups and Symmetry: A Guide to Discovering Mathematics


Book Description

Mathematics is discovered by looking at examples, noticing patterns, making conjectures, and testing those conjectures. Once discovered, the final results get organized and put in textbooks. The details and the excitement of the discovery are lost. This book introduces the reader to the excitement of the original discovery. By means of a wide variety of tasks, readers are led to find interesting examples, notice patterns, devise rules to explain the patterns, and discover mathematics for themselves. The subject studied here is the mathematics behind the idea of symmetry, but the methods and ideas apply to all of mathematics. The only prerequisites are enthusiasm and a knowledge of basic high-school math. The book is only a guide. It will start you off in the right direction and bring you back if you stray too far. The excitement and the discovery are left to you.




Discovering Mathematics


Book Description

The term "mathematics" usually suggests an array of familiar problems with solutions derived from well-known techniques. Discovering Mathematics: The Art of Investigation takes a different approach, exploring how new ideas and chance observations can be pursued, and focusing on how the process invariably leads to interesting questions that would never have otherwise arisen. With puzzles involving coins, postage stamps, and other commonplace items, students are challenged to account for the simple explanations behind perplexing mathematical phenomena. Elementary methods and solutions allow readers to concentrate on the way in which the material is explored, as well as on strategies for answers that aren't immediately obvious. The problems don't require the kind of sophistication that would put them out of reach of ordinary students, but they're sufficiently complex to capture the essential features of mathematical discovery. Complete solutions appear at the end.




An Accompaniment to Higher Mathematics


Book Description

Designed for students preparing to engage in their first struggles to understand and write proofs and to read mathematics independently, this is well suited as a supplementary text in courses on introductory real analysis, advanced calculus, abstract algebra, or topology. The book teaches in detail how to construct examples and non-examples to help understand a new theorem or definition; it shows how to discover the outline of a proof in the form of the theorem and how logical structures determine the forms that proofs may take. Throughout, the text asks the reader to pause and work on an example or a problem before continuing, and encourages the student to engage the topic at hand and to learn from failed attempts at solving problems. The book may also be used as the main text for a "transitions" course bridging the gap between calculus and higher mathematics. The whole concludes with a set of "Laboratories" in which students can practice the skills learned in the earlier chapters on set theory and function theory.




Exploring Mathematics


Book Description

With exercises and projects, Exploring Mathematics supports an active approach to the transition to upper-level theoretical math courses.




Transition to Higher Mathematics


Book Description

This book is written for students who have taken calculus and want to learn what "real mathematics" is.




A Bridge to Higher Mathematics


Book Description

A Bridge to Higher Mathematics is more than simply another book to aid the transition to advanced mathematics. The authors intend to assist students in developing a deeper understanding of mathematics and mathematical thought. The only way to understand mathematics is by doing mathematics. The reader will learn the language of axioms and theorems and will write convincing and cogent proofs using quantifiers. Students will solve many puzzles and encounter some mysteries and challenging problems. The emphasis is on proof. To progress towards mathematical maturity, it is necessary to be trained in two aspects: the ability to read and understand a proof and the ability to write a proof. The journey begins with elements of logic and techniques of proof, then with elementary set theory, relations and functions. Peano axioms for positive integers and for natural numbers follow, in particular mathematical and other forms of induction. Next is the construction of integers including some elementary number theory. The notions of finite and infinite sets, cardinality of counting techniques and combinatorics illustrate more techniques of proof. For more advanced readers, the text concludes with sets of rational numbers, the set of reals and the set of complex numbers. Topics, like Zorn’s lemma and the axiom of choice are included. More challenging problems are marked with a star. All these materials are optional, depending on the instructor and the goals of the course.







Discovering Mathematics


Book Description

The book contains chapters of structured approach to problem solving in mathematical analysis on an intermediate level. It follows the ideas of G.Polya and others, distinguishing between exercises and problem solving in mathematics. Interrelated concepts are connected by hyperlinks, pointing toward easier or more difficult problems so as to show paths of mathematical reasoning. Basic definitions and theorems can also be found by hyperlinks from relevant places. Problems are open to alternative formulations, generalizations, simplifications, and verification of hypotheses by the reader; this is shown to be helpful in solving problems. The book presents how advanced mathematical software can aid all stages of mathematical reasoning while the mathematical content remains in foreground. The authors show how software can contribute to deeper understanding and to enlarging the scope of teaching for students and teachers of mathematics.