Discrete Cosine Transform


Book Description

This is the first comprehensive treatment of the theoretical aspects of the discrete cosine transform (DCT), which is being recommended by various standards organizations, such as the CCITT, ISO etc., as the primary compression tool in digital image coding. The main purpose of the book is to provide a complete source for the user of this signal processing tool, where both the basics and the applications are detailed. An extensive bibliography covers both the theory and applications of the DCT. The novice will find the book useful in its self-contained treatment of the theory of the DCT, the detailed description of various algorithms supported by computer programs and the range of possible applications, including codecs used for teleconferencing, videophone, progressive image transmission, and broadcast TV. The more advanced user will appreciate the extensive references. Tables describing ASIC VLSI chips for implementing DCT, and motion estimation and details on image compression boards are also provided.




Discrete Cosine and Sine Transforms


Book Description

The Discrete Cosine Transform (DCT) is used in many applications by the scientific, engineering and research communities and in data compression in particular. Fast algorithms and applications of the DCT Type II (DCT-II) have become the heart of many established international image/video coding standards. Since then other forms of the DCT and Discrete Sine Transform (DST) have been investigated in detail. This new edition presents the complete set of DCT and DST discrete trigonometric transforms, including their definitions, general mathematical properties, and relations to the optimal Karhunen-Loéve transform (KLT), with the emphasis on fast algorithms (one-dimensional and two-dimensional) and integer approximations of DCTs and DSTs for their efficient implementations in the integer domain. DCTs and DSTs are real-valued transforms that map integer-valued signals to floating-point coefficients. To eliminate the floating-point operations, various methods of integer approximations have been proposed to construct and flexibly generate a family of integer DCT and DST transforms with arbitrary accuracy and performance. The integer DCTs/DSTs with low-cost and low-powered implementation can replace the corresponding real-valued transforms in wireless and satellite communication systems as well as portable computing applications. The book is essentially a detailed excursion on orthogonal/orthonormal DCT and DST matrices, their matrix factorizations and integer aproximations. It is hoped that the book will serve as a valuable reference for industry, academia and research institutes in developing integer DCTs and DSTs as well as an inspiration source for further advanced research. - Presentation of the complete set of DCTs and DSTs in context of entire class of discrete unitary sinusoidal transforms: the origin, definitions, general mathematical properties, mutual relationships and relations to the optimal Karhunen-Loéve transform (KLT) - Unified treatment with the fast implementations of DCTs and DSTs: the fast rotation-based algorithms derived in the form of recursive sparse matrix factorizations of a transform matrix including one- and two-dimensional cases - Detailed presentation of various methods and design approaches to integer approximation of DCTs and DSTs utilizing the basic concepts of linear algebra, matrix theory and matrix computations leading to their efficient multiplierless real-time implementations, or in general reversible integer-to-integer implementations - Comprehensive list of additional references reflecting recent/latest developments in the efficient implementations of DCTs and DSTs mainly one-, two-, three- and multi-dimensional fast DCT/DST algorithms including the recent active research topics for the time period from 1990 up to now




Discrete Cosine Transform, Second Edition


Book Description

Many new DCT-like transforms have been proposed since the first edition of this book. For example, the integer DCT that yields integer transform coefficients, the directional DCT to take advantage of several directions of the image and the steerable DCT. The advent of higher dimensional frames such as UHDTV and 4K-TV demand for small and large transform blocks to encode small or large similar areas respectively in an efficient way. Therefore, a new updated book on DCT, adapted to the modern days, considering the new advances in this area and targeted for students, researchers and the industry is a necessity.




Encyclopedia of Multimedia


Book Description

This second edition provides easy access to important concepts, issues and technology trends in the field of multimedia technologies, systems, techniques, and applications. Over 1,100 heavily-illustrated pages — including 80 new entries — present concise overviews of all aspects of software, systems, web tools and hardware that enable video, audio and developing media to be shared and delivered electronically.




Discrete Fourier Analysis and Wavelets


Book Description

Delivers an appropriate mix of theory and applications to help readers understand the process and problems of image and signal analysis Maintaining a comprehensive and accessible treatment of the concepts, methods, and applications of signal and image data transformation, this Second Edition of Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing features updated and revised coverage throughout with an emphasis on key and recent developments in the field of signal and image processing. Topical coverage includes: vector spaces, signals, and images; the discrete Fourier transform; the discrete cosine transform; convolution and filtering; windowing and localization; spectrograms; frames; filter banks; lifting schemes; and wavelets. Discrete Fourier Analysis and Wavelets introduces a new chapter on frames—a new technology in which signals, images, and other data are redundantly measured. This redundancy allows for more sophisticated signal analysis. The new coverage also expands upon the discussion on spectrograms using a frames approach. In addition, the book includes a new chapter on lifting schemes for wavelets and provides a variation on the original low-pass/high-pass filter bank approach to the design and implementation of wavelets. These new chapters also include appropriate exercises and MATLAB® projects for further experimentation and practice. Features updated and revised content throughout, continues to emphasize discrete and digital methods, and utilizes MATLAB® to illustrate these concepts Contains two new chapters on frames and lifting schemes, which take into account crucial new advances in the field of signal and image processing Expands the discussion on spectrograms using a frames approach, which is an ideal method for reconstructing signals after information has been lost or corrupted (packet erasure) Maintains a comprehensive treatment of linear signal processing for audio and image signals with a well-balanced and accessible selection of topics that appeal to a diverse audience within mathematics and engineering Focuses on the underlying mathematics, especially the concepts of finite-dimensional vector spaces and matrix methods, and provides a rigorous model for signals and images based on vector spaces and linear algebra methods Supplemented with a companion website containing solution sets and software exploration support for MATLAB and SciPy (Scientific Python) Thoroughly class-tested over the past fifteen years, Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing is an appropriately self-contained book ideal for a one-semester course on the subject.




VLSI DIGITAL SIGNAL PROCESSING SYSTEMS: DESIGN AND IMPLEMENTATION


Book Description

Market_Desc: · Students in graduate level courses· Electrical Engineers· Computer Scientists· Computer Architecture Designers· Circuit Designers· Algorithm Designers· System Designers· Computer Programmers in the Multimedia and Wireless Communications Industries· VLSI System Designers Special Features: This example-packed resource provides invaluable professional training for a rapidly-expanding industry. · Presents a variety of approaches to analysis, estimation, and reduction of power consumption in order to help designers extend battery life.· Includes application-driven problems at the end of each chapter· Features six appendices covering shortest path algorithms used in retiming, scheduling, and allocation techniques, as well as determining the iteration bound· The Author is a recognized expert in the field, having written several books, taught several graduate-level classes, and served on several IEEE boards About The Book: This book complements the other Digital Signaling Processing books in our list, which include an introductory treatment (Marven), a comprehensive handbook (Mitra), a professional reference (Kaloupsidis), and others which pertain to a specific topic such as noise control. This graduate level textbook will fill an important niche in a rapidly expanding market.




Mathematics of the Discrete Fourier Transform (DFT)


Book Description

"The DFT can be understood as a numerical approximation to the Fourier transform. However, the DFT has its own exact Fourier theory, and that is the focus of this book. The DFT is normally encountered as the Fast Fourier Transform (FFT)--a high-speed algorithm for computing the DFT. The FFT is used extensively in a wide range of digital signal processing applications, including spectrum analysis, high-speed convolution (linear filtering), filter banks, signal detection and estimation, system identification, audio compression (such as MPEG-II AAC), spectral modeling sound synthesis, and many others. In this book, certain topics in digital audio signal processing are introduced as example applications of the DFT"--Back cover




Artificial Intelligence and Soft Computing


Book Description

The two-volume set LNAI 10245 and LNAI 10246 constitutes the refereed proceedings of the 16th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2017, held in Zakopane, Poland in June 2017. The 133 revised full papers presented were carefully reviewed and selected from 274 submissions. The papers included in the first volume are organized in the following five parts: neural networks and their applications; fuzzy systems and their applications; evolutionary algorithms and their applications; computer vision, image and speech analysis; and bioinformatics, biometrics and medical applications.




Innovations in Digital Watermarking Techniques


Book Description

Information security and copyright protection are more important today than before. Digital watermarking is one of the widely used techniques used in the world in the area of information security. This book introduces a number of digital watermarking techniques and is divided into four parts. The first part introduces the importance of watermarking techniques and intelligent technology. The second part includes a number of watermarking techniques. The third part includes the hybrid watermarking techniques and the final part presents conclusions. This book is directed to students, professors, researchers and application engineers who are interested in the area of information security.




4th International Conference on Internet of Things and Connected Technologies (ICIoTCT), 2019


Book Description

This book presents the proceedings of the 4th International Conference on Internet of Things and Connected Technologies (ICIoTCT), held on May 9–10, 2019, at Malaviya National Institute of Technology (MNIT), Jaipur, India. The Internet of Things (IoT) promises to usher in a revolutionary, fully interconnected “smart” world, with relationships between objects and their environment and objects and people becoming more tightly intertwined. The prospect of the Internet of Things as a ubiquitous array of devices bound to the Internet could fundamentally change how people think about what it means to be “online”. The ICIotCT 2019 conference provided a platform to discuss advances in Internet of Things (IoT) and connected technologies, such as various protocols and standards. It also offered participants the opportunity to interact with experts through keynote talks, paper presentations and discussions, and as such stimulated research. With the recent adoption of a variety of enabling wireless communication technologies, like RFID tags, BLE, ZigBee, embedded sensor and actuator nodes, and various protocols such as CoAP, MQTT and DNS, IoT has moved on from its infancy. Today smart sensors can collaborate directly with machines to automate decision-making or to control a task without human involvement. Further, smart technologies, including green electronics, green radios, fuzzy neural approaches, and intelligent signal processing techniques play an important role in the development of the wearable healthcare devices.