Modeling and Simulation of Discrete Event Systems


Book Description

Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on DES-M&S in which all the major DES modeling formalisms – activity-based, process-oriented, state-based, and event-based – are covered in a unified manner: A well-defined procedure for building a formal model in the form of event graph, ACD, or state graph Diverse types of modeling templates and examples that can be used as building blocks for a complex, real-life model A systematic, easy-to-follow procedure combined with sample C# codes for developing simulators in various modeling formalisms Simple tutorials as well as sample model files for using popular off-the-shelf simulators such as SIGMA®, ACE®, and Arena® Up-to-date research results as well as research issues and directions in DES-M&S Modeling and Simulation of Discrete-Event Systems is an ideal textbook for undergraduate and graduate students of simulation/industrial engineering and computer science, as well as for simulation practitioners and researchers.




Discrete-Event Simulation


Book Description

"This is an excellent and well-written text on discrete event simulation with a focus on applications in Operations Research. There is substantial attention to programming, output analysis, pseudo-random number generation and modelling and these sections are quite thorough. Methods are provided for generating pseudo-random numbers (including combining such streams) and for generating random numbers from most standard statistical distributions." --ISI Short Book Reviews, 22:2, August 2002




Discrete Event Simulation for Health Technology Assessment


Book Description

This is the first book to make all the central concepts of discrete event simulation relevant for health technology assessment. Accessible to beginners, the book requires no prerequisites and describes the concepts with as little jargon as possible. It presents essential concepts, a fully worked out implementation example, approaches to analyze the simulations, the development of the required equations, model verification techniques, and validation. The book also covers various special topics and includes a real case study involving screening strategies for breast cancer surveillance.




Discrete-event System Simulation


Book Description

This book provides a basic treatment of discrete-event simulation, including the proper collection and analysis of data, the use of analytic techniques, verification and validation of models, and designing simulation experiments.Contains up-to-date treatment of simulation of manufacturing and material handling systems. Includes numerous solved examples. Offers an integrated website. Explains how to interpret simulation software output.For those interested in learning more about discrete-event simulation.




Discrete Event Simulations


Book Description

The Discrete Event Simulation (DES) method has received widespread attention and acceptance by both researchers and practitioners in recent years. The range of application of DES spans across many different disciplines and research fields. In research, further development and advancements of the basic DES algorithm continue to be sought while various hybrid methods derived by combining DES with other simulation techniques continue to be developed. This book presents state-of-the-art contributions on fundamental development of the DES method, novel integration of the method with other modeling techniques as well as applications towards simulating and analyzing the performances of various types of systems. This book will be of interest to undergraduate and graduate students, researchers as well as professionals who are actively engaged in DES related work.




Object-Oriented Discrete-Event Simulation with Java


Book Description

Researches and developers of simulation models state that the Java program ming language presents a unique and significant opportunity for important changes in the way we develop simulation models today. The most important characteristics of the Java language that are advantageous for simulation are its multi-threading capabilities, its facilities for executing programs across the Web, and its graphics facilities. It is feasible to develop compatible and reusable simulation components that will facilitate the construction of newer and more complex models. This is possible with Java development environments. Another important trend that begun very recently is web-based simulation, i.e., and the execution of simulation models using Internet browser software. This book introduces the application of the Java programming language in discrete-event simulation. In addition, the fundamental concepts and prac tical simulation techniques for modeling different types of systems to study their general behavior and their performance are introduced. The approaches applied are the process interaction approach to discrete-event simulation and object-oriented modeling. Java is used as the implementation language and UML as the modeling language. The first offers several advantages compared to C++, the most important being: thread handling, graphical user interfaces (QUI) and Web computing. The second language, UML (Unified Modeling Language) is the standard notation used today for modeling systems as a collection of classes, class relationships, objects, and object behavior.




Conceptual Modeling for Discrete-Event Simulation


Book Description

Bringing together an international group of researchers involved in military, business, and health modeling and simulation, Conceptual Modeling for Discrete-Event Simulation presents a comprehensive view of the current state of the art in the field. The book addresses a host of issues, including: What is a conceptual model?How is conceptual modelin




Discrete-event System Simulation


Book Description

Offers comprehensive coverage of discrete-event simulation, emphasizing and describing the procedures used in operations research - methodology, generation and testing of random numbers, collection and analysis of input data, verification of simulation models and analysis of output data.




Introduction to Discrete Event Systems


Book Description

This unique textbook comprehensively introduces the field of discrete event systems, offering a breadth of coverage that makes the material accessible to readers of varied backgrounds. The book emphasizes a unified modeling framework that transcends specific application areas, linking the following topics in a coherent manner: language and automata theory, supervisory control, Petri net theory, Markov chains and queueing theory, discrete-event simulation, and concurrent estimation techniques. Topics and features: detailed treatment of automata and language theory in the context of discrete event systems, including application to state estimation and diagnosis comprehensive coverage of centralized and decentralized supervisory control of partially-observed systems timed models, including timed automata and hybrid automata stochastic models for discrete event systems and controlled Markov chains discrete event simulation an introduction to stochastic hybrid systems sensitivity analysis and optimization of discrete event and hybrid systems new in the third edition: opacity properties, enhanced coverage of supervisory control, overview of latest software tools This proven textbook is essential to advanced-level students and researchers in a variety of disciplines where the study of discrete event systems is relevant: control, communications, computer engineering, computer science, manufacturing engineering, transportation networks, operations research, and industrial engineering. ​Christos G. Cassandras is Distinguished Professor of Engineering, Professor of Systems Engineering, and Professor of Electrical and Computer Engineering at Boston University. Stéphane Lafortune is Professor of Electrical Engineering and Computer Science at the University of Michigan, Ann Arbor.




Theory of Modeling and Simulation


Book Description

Theory of Modeling and Simulation: Discrete Event & Iterative System Computational Foundations, Third Edition, continues the legacy of this authoritative and complete theoretical work. It is ideal for graduate and PhD students and working engineers interested in posing and solving problems using the tools of logico-mathematical modeling and computer simulation. Continuing its emphasis on the integration of discrete event and continuous modeling approaches, the work focuses light on DEVS and its potential to support the co-existence and interoperation of multiple formalisms in model components. New sections in this updated edition include discussions on important new extensions to theory, including chapter-length coverage of iterative system specification and DEVS and their fundamental importance, closure under coupling for iteratively specified systems, existence, uniqueness, non-deterministic conditions, and temporal progressiveness (legitimacy). Presents a 40% revised and expanded new edition of this classic book with many important post-2000 extensions to core theory Provides a streamlined introduction to Discrete Event System Specification (DEVS) formalism for modeling and simulation Packages all the "need-to-know" information on DEVS formalism in one place Expanded to include an online ancillary package, including numerous examples of theory and implementation in DEVS-based software, student solutions and instructors manual