Discrete Gambling and Stochastic Games


Book Description

The theory of probability began in the seventeenth century with attempts to calculate the odds of winning in certain games of chance. However, it was not until the middle of the twentieth century that mathematicians de veloped general techniques for maximizing the chances of beating a casino or winning against an intelligent opponent. These methods of finding op timal strategies for a player are at the heart of the modern theories of stochastic control and stochastic games. There are numerous applications to engineering and the social sciences, but the liveliest intuition still comes from gambling. The now classic work How to Gamble If You Must: Inequalities for Stochastic Processes by Dubins and Savage (1965) uses gambling termi nology and examples to develop an elegant, deep, and quite general theory of discrete-time stochastic control. A gambler "controls" the stochastic pro cess of his or her successive fortunes by choosing which games to play and what bets to make.




Statistics, Probability, and Game Theory


Book Description

Most of the 26 papers are research reports on probability, statistics, gambling, game theory, Markov decision processes, set theory, and logic. But they also include reviews on comparing experiments, games of timing, merging opinions, associated memory models, and SPLIF's; historical views of Carnap, von Mises, and the Berkeley Statistics Department; and a brief history, appreciation, and bibliography of Berkeley professor Blackwell. A sampling of titles turns up The Hamiltonian Cycle Problem and Singularly Perturbed Markov Decision Process, A Pathwise Approach to Dynkin Games, The Redistribution of Velocity: Collision and Transformations, Casino Winnings at Blackjack, and Randomness and the Foundations of Probability. No index. Annotation copyrighted by Book News, Inc., Portland, OR




Repeated Games


Book Description

This landmark work significantly advances the literature on game theory with a masterful conceptual presentation of the CORE working papers published in 1994.




Advances in Dynamic Games and Applications


Book Description

Game theory is a rich and active area of research of which this new volume of the Annals of the International Society of Dynamic Games is yet fresh evidence. Since the second half of the 20th century, the area of dynamic games has man aged to attract outstanding mathematicians, who found exciting open questions requiring tools from a wide variety of mathematical disciplines; economists, so cial and political scientists, who used game theory to model and study competition and cooperative behavior; and engineers, who used games in computer sciences, telecommunications, and other areas. The contents of this volume are primarily based on selected presentation made at the 8th International Symposium of Dynamic Games and Applications, held in Chateau Vaalsbroek, Maastricht, the Netherlands, July 5-8, 1998; this conference took place under the auspices of the International Society of Dynamic Games (ISDG), established in 1990. The conference has been cosponsored by the Control Systems Society of the IEEE, IFAC (International Federation of Automatic Con trol), INRIA (Institute National de Recherche en Informatique et Automatique), and the University of Maastricht. One ofthe activities of the ISDG is the publica tion of the Annals. Every paper that appears in this volume has passed through a stringent reviewing process, as is the case with publications for archival journals.




Game Theory and Partial Differential Equations


Book Description

Extending the well-known connection between classical linear potential theory and probability theory (through the interplay between harmonic functions and martingales) to the nonlinear case of tug-of-war games and their related partial differential equations, this unique book collects several results in this direction and puts them in an elementary perspective in a lucid and self-contained fashion.




How to Gamble If You Must


Book Description

This classic of advanced statistics is geared toward graduate-level readers and uses the concepts of gambling to develop important ideas in probability theory. The authors have distilled the essence of many years' research into a dozen concise chapters. "Strongly recommended" by the Journal of the American Statistical Association upon its initial publication, this revised and updated edition features contributions from two well-known statisticians that include a new Preface, updated references, and findings from recent research. Following an introductory chapter, the book formulates the gambler's problem and discusses gambling strategies. Succeeding chapters explore the properties associated with casinos and certain measures of subfairness. Concluding chapters relate the scope of the gambler's problems to more general mathematical ideas, including dynamic programming, Bayesian statistics, and stochastic processes. Dover (2014) revised and updated republication of the 1976 Dover edition entitled Inequalities for Stochastic Processes. See every Dover book in print at www.doverpublications.com




Handbook of Markov Decision Processes


Book Description

Eugene A. Feinberg Adam Shwartz This volume deals with the theory of Markov Decision Processes (MDPs) and their applications. Each chapter was written by a leading expert in the re spective area. The papers cover major research areas and methodologies, and discuss open questions and future research directions. The papers can be read independently, with the basic notation and concepts ofSection 1.2. Most chap ters should be accessible by graduate or advanced undergraduate students in fields of operations research, electrical engineering, and computer science. 1.1 AN OVERVIEW OF MARKOV DECISION PROCESSES The theory of Markov Decision Processes-also known under several other names including sequential stochastic optimization, discrete-time stochastic control, and stochastic dynamic programming-studiessequential optimization ofdiscrete time stochastic systems. The basic object is a discrete-time stochas tic system whose transition mechanism can be controlled over time. Each control policy defines the stochastic process and values of objective functions associated with this process. The goal is to select a "good" control policy. In real life, decisions that humans and computers make on all levels usually have two types ofimpacts: (i) they cost orsavetime, money, or other resources, or they bring revenues, as well as (ii) they have an impact on the future, by influencing the dynamics. In many situations, decisions with the largest immediate profit may not be good in view offuture events. MDPs model this paradigm and provide results on the structure and existence of good policies and on methods for their calculation.




Two-Scale Stochastic Systems


Book Description

Two-scale systems described by singularly perturbed SDEs have been the subject of ample literature. However, this new monograph develops subjects that were rarely addressed and could be given the collective description "Stochastic Tikhonov-Levinson theory and its applications." The book provides a mathematical apparatus designed to analyze the dynamic behaviour of a randomly perturbed system with fast and slow variables. In contrast to the deterministic Tikhonov-Levinson theory, the basic model is described in a more realistic way by stochastic differential equations. This leads to a number of new theoretical questions but simultaneously allows us to treat in a unified way a surprisingly wide spectrum of applications like fast modulations, approximate filtering, and stochastic approximation.Two-scale systems described by singularly perturbed SDEs have been the subject of ample literature. However, this new monograph develops subjects that were rarely addressed and could be given the collective description "Stochastic Tikhonov-Levinson theory and its applications." The book provides a mathematical apparatus designed to analyze the dynamic behaviour of a randomly perturbed system with fast and slow variables. In contrast to the deterministic Tikhonov-Levinson theory, the basic model is described in a more realistic way by stochastic differential equations. This leads to a number of new theoretical questions but simultaneously allows us to treat in a unified way a surprisingly wide spectrum of applications like fast modulations, approximate filtering, and stochastic approximation.




Stochastic Networks and Queues


Book Description

Queues and stochastic networks are analyzed in this book with purely probabilistic methods. The purpose of these lectures is to show that general results from Markov processes, martingales or ergodic theory can be used directly to study the corresponding stochastic processes. Recent developments have shown that, instead of having ad-hoc methods, a better understanding of fundamental results on stochastic processes is crucial to study the complex behavior of stochastic networks. In this book, various aspects of these stochastic models are investigated in depth in an elementary way: Existence of equilibrium, characterization of stationary regimes, transient behaviors (rare events, hitting times) and critical regimes, etc. A simple presentation of stationary point processes and Palm measures is given. Scaling methods and functional limit theorems are a major theme of this book. In particular, a complete chapter is devoted to fluid limits of Markov processes.




Stochastic Simulation: Algorithms and Analysis


Book Description

Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book provides a broad treatment of such sampling-based methods, as well as accompanying mathematical analysis of the convergence properties of the methods discussed. The reach of the ideas is illustrated by discussing a wide range of applications and the models that have found wide usage. The first half of the book focuses on general methods; the second half discusses model-specific algorithms. Exercises and illustrations are included.