Discrete Geometry and Symmetry


Book Description

This book consists of contributions from experts, presenting a fruitful interplay between different approaches to discrete geometry. Most of the chapters were collected at the conference “Geometry and Symmetry” in Veszprém, Hungary from 29 June to 3 July 2015. The conference was dedicated to Károly Bezdek and Egon Schulte on the occasion of their 60th birthdays, acknowledging their highly regarded contributions in these fields. While the classical problems of discrete geometry have a strong connection to geometric analysis, coding theory, symmetry groups, and number theory, their connection to combinatorics and optimization has become of particular importance. The last decades have seen a revival of interest in discrete geometric structures and their symmetry. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory and geometry, combinatorial group theory, and hyperbolic geometry and topology. This book contains papers on new developments in these areas, including convex and abstract polytopes and their recent generalizations, tiling and packing, zonotopes, isoperimetric inequalities, and on the geometric and combinatorial aspects of linear optimization. The book is a valuable resource for researchers, both junior and senior, in the field of discrete geometry, combinatorics, or discrete optimization. Graduate students find state-of-the-art surveys and an open problem collection.




Discrete Mathematics and Symmetry


Book Description

Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group.




Handbook of Discrete and Computational Geometry


Book Description

The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.




Discrete and Computational Geometry


Book Description

An essential introduction to discrete and computational geometry Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems. The essential introduction to discrete and computational geometry Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and unsolved problems Suitable for sophomores in mathematics, computer science, engineering, or physics Rigorous but accessible An online solutions manual is available (for teachers only)




Handbook of Discrete and Computational Geometry


Book Description

Jacob E. Goodman, co-founder and editor of Discrete & Computational Geometry, the preeminent journal on this area in the international mathematics and computer science community, joins forces with the distinguished computer scientist Joseph O'Rourke and other well-known authorities to produce the definitive handbook on these two interrelated fields. Over the past decade or so, researchers and professionals in discrete geometry and the newer field of computational geometry have developed a highly productive collaborative relationship, where each area benefits from the methods and insights of the other. At the same time that discrete and computational geometry are becoming more closely identified, applications of the results of this work are being used in an increasing number of widely differing areas, from computer graphics and linear programming to manufacturing and robotics. The authors have answered the need for a comprehensive handbook for workers in these and related fields, and for other users of the body of results. While much information can be found on discrete and computational geometry, it is scattered among many sources, and individual books and articles are often narrowly focused. Handbook of Discrete and Computational Geometry brings together, for the first time, all of the major results in both these fields into one volume. Thousands of results - theorems, algorithms, and tables - throughout the volume definitively cover the field, while numerous applications from many different fields demonstrate practical usage. The material is presented clearly enough to assist the novice, but in enough depth to appeal to the specialist. Every technical term is clearly defined in an easy-to-use glossary. Over 200 figures illustrate the concepts presented and provide supporting examples. Information on current geometric software - what it does, how efficiently it does it, and where to find it - is also included.




Geometry of Crystallographic Groups


Book Description

Crystallographic groups are groups which act in a nice way and via isometries on some n-dimensional Euclidean space. This book gives an example of the torsion free crystallographic group with a trivial center and a trivial outer automorphism group.




Lectures on Discrete Geometry


Book Description

The main topics in this introductory text to discrete geometry include basics on convex sets, convex polytopes and hyperplane arrangements, combinatorial complexity of geometric configurations, intersection patterns and transversals of convex sets, geometric Ramsey-type results, and embeddings of finite metric spaces into normed spaces. In each area, the text explains several key results and methods.




The Cube-A Window to Convex and Discrete Geometry


Book Description

Analysis, Algebra, Combinatorics, Graph Theory, Hyperbolic Geometry, Number Theory.




Symmetry in Graphs


Book Description

The first full-length book on the theme of symmetry in graphs, a fast-growing topic in algebraic graph theory.




Discrete Geometry and Optimization


Book Description

​Optimization has long been a source of both inspiration and applications for geometers, and conversely, discrete and convex geometry have provided the foundations for many optimization techniques, leading to a rich interplay between these subjects. The purpose of the Workshop on Discrete Geometry, the Conference on Discrete Geometry and Optimization, and the Workshop on Optimization, held in September 2011 at the Fields Institute, Toronto, was to further stimulate the interaction between geometers and optimizers. This volume reflects the interplay between these areas. The inspiring Fejes Tóth Lecture Series, delivered by Thomas Hales of the University of Pittsburgh, exemplified this approach. While these fields have recently witnessed a lot of activity and successes, many questions remain open. For example, Fields medalist Stephen Smale stated that the question of the existence of a strongly polynomial time algorithm for linear optimization is one of the most important unsolved problems at the beginning of the 21st century. The broad range of topics covered in this volume demonstrates the many recent and fruitful connections between different approaches, and features novel results and state-of-the-art surveys as well as open problems.