Discrete-Time Processing of Speech Signals


Book Description

Commercial applications of speech processing and recognition are fast becoming a growth industry that will shape the next decade. Now students and practicing engineers of signal processing can find in a single volume the fundamentals essential to understanding this rapidly developing field. IEEE Press is pleased to publish a classic reissue of Discrete-Time Processing of Speech Signals. Specially featured in this reissue is the addition of valuable World Wide Web links to the latest speech data references. This landmark book offers a balanced discussion of both the mathematical theory of digital speech signal processing and critical contemporary applications. The authors provide a comprehensive view of all major modern speech processing areas: speech production physiology and modeling, signal analysis techniques, coding, enhancement, quality assessment, and recognition. You will learn the principles needed to understand advanced technologies in speech processing -- from speech coding for communications systems to biomedical applications of speech analysis and recognition. Ideal for self-study or as a course text, this far-reaching reference book offers an extensive historical context for concepts under discussion, end-of-chapter problems, and practical algorithms. Discrete-Time Processing of Speech Signals is the definitive resource for students, engineers, and scientists in the speech processing field. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley Makerting Department.




Discrete-Time Speech Signal Processing


Book Description

Essential principles, practical examples, current applications, and leading-edge research. In this book, Thomas F. Quatieri presents the field's most intensive, up-to-date tutorial and reference on discrete-time speech signal processing. Building on his MIT graduate course, he introduces key principles, essential applications, and state-of-the-art research, and he identifies limitations that point the way to new research opportunities. Quatieri provides an excellent balance of theory and application, beginning with a complete framework for understanding discrete-time speech signal processing. Along the way, he presents important advances never before covered in a speech signal processing text book, including sinusoidal speech processing, advanced time-frequency analysis, and nonlinear aeroacoustic speech production modeling. Coverage includes: Speech production and speech perception: a dual view Crucial distinctions between stochastic and deterministic problems Pole-zero speech models Homomorphic signal processing Short-time Fourier transform analysis/synthesis Filter-bank and wavelet analysis/synthesis Nonlinear measurement and modeling techniques The book's in-depth applications coverage includes speech coding, enhancement, and modification; speaker recognition; noise reduction; signal restoration; dynamic range compression, and more. Principles of Discrete-Time Speech Processing also contains an exceptionally complete series of examples and Matlab exercises, all carefully integrated into the book's coverage of theory and applications.




Introduction to Digital Speech Processing


Book Description

Provides the reader with a practical introduction to the wide range of important concepts that comprise the field of digital speech processing. Students of speech research and researchers working in the field can use this as a reference guide.




Speech and Audio Signal Processing


Book Description

When Speech and Audio Signal Processing published in 1999, it stood out from its competition in its breadth of coverage and its accessible, intutiont-based style. This book was aimed at individual students and engineers excited about the broad span of audio processing and curious to understand the available techniques. Since then, with the advent of the iPod in 2001, the field of digital audio and music has exploded, leading to a much greater interest in the technical aspects of audio processing. This Second Edition will update and revise the original book to augment it with new material describing both the enabling technologies of digital music distribution (most significantly the MP3) and a range of exciting new research areas in automatic music content processing (such as automatic transcription, music similarity, etc.) that have emerged in the past five years, driven by the digital music revolution. New chapter topics include: Psychoacoustic Audio Coding, describing MP3 and related audio coding schemes based on psychoacoustic masking of quantization noise Music Transcription, including automatically deriving notes, beats, and chords from music signals. Music Information Retrieval, primarily focusing on audio-based genre classification, artist/style identification, and similarity estimation. Audio Source Separation, including multi-microphone beamforming, blind source separation, and the perception-inspired techniques usually referred to as Computational Auditory Scene Analysis (CASA).




Digital Signal Processing and Statistical Classification


Book Description

This is the first book to introduce and integrate advanced digital signal processing (DSP) and classification together, and the only volume to introduce state-of-the-art transforms including DFT, FFT, DCT, DHT, PCT, CDT, and ODT together for DSP and communication applications. You get step-by-step guidance in discrete-time domain signal processing and frequency domain signal analysis; digital filter design and adaptive filtering; multirate digital processing; and statistical signal classification. It also helps you overcome problems associated with multirate A/D and D/A converters.




Discrete-Time Signal Processing


Book Description




Signal Processing for Communications


Book Description

With a novel, less classical approach to the subject, the authors have written a book with the conviction that signal processing should be taught to be fun. The treatment is therefore less focused on the mathematics and more on the conceptual aspects, the idea being to allow the readers to think about the subject at a higher conceptual level, thus building the foundations for more advanced topics. The book remains an engineering text, with the goal of helping students solve real-world problems. In this vein, the last chapter pulls together the individual topics as discussed throughout the book into an in-depth look at the development of an end-to-end communication system, namely, a modem for communicating digital information over an analog channel.




Signals & Systems


Book Description

Exploring signals and systems, this work develops continuous-time and discrete-time concepts, highlighting the differences and similarities. Two chapters deal with the Laplace transform and the Z-transform. Basic methods such as filtering, communication an




Digital Signal Processing


Book Description

Digital Signal Processing, Second Edition enables electrical engineers and technicians in the fields of biomedical, computer, and electronics engineering to master the essential fundamentals of DSP principles and practice. Many instructive worked examples are used to illustrate the material, and the use of mathematics is minimized for easier grasp of concepts. As such, this title is also useful to undergraduates in electrical engineering, and as a reference for science students and practicing engineers. The book goes beyond DSP theory, to show implementation of algorithms in hardware and software. Additional topics covered include adaptive filtering with noise reduction and echo cancellations, speech compression, signal sampling, digital filter realizations, filter design, multimedia applications, over-sampling, etc. More advanced topics are also covered, such as adaptive filters, speech compression such as PCM, u-law, ADPCM, and multi-rate DSP and over-sampling ADC. New to this edition: - MATLAB projects dealing with practical applications added throughout the book - New chapter (chapter 13) covering sub-band coding and wavelet transforms, methods that have become popular in the DSP field - New applications included in many chapters, including applications of DFT to seismic signals, electrocardiography data, and vibration signals - All real-time C programs revised for the TMS320C6713 DSK - Covers DSP principles with emphasis on communications and control applications - Chapter objectives, worked examples, and end-of-chapter exercises aid the reader in grasping key concepts and solving related problems - Website with MATLAB programs for simulation and C programs for real-time DSP




Foundations of Signal Processing


Book Description

This comprehensive and engaging textbook introduces the basic principles and techniques of signal processing, from the fundamental ideas of signals and systems theory to real-world applications. Students are introduced to the powerful foundations of modern signal processing, including the basic geometry of Hilbert space, the mathematics of Fourier transforms, and essentials of sampling, interpolation, approximation and compression The authors discuss real-world issues and hurdles to using these tools, and ways of adapting them to overcome problems of finiteness and localization, the limitations of uncertainty, and computational costs. It includes over 160 homework problems and over 220 worked examples, specifically designed to test and expand students' understanding of the fundamentals of signal processing, and is accompanied by extensive online materials designed to aid learning, including Mathematica® resources and interactive demonstrations.