International Handbook of Earthquake Engineering


Book Description

The subject of earthquake engineering has been the focus of my teaching and research for many years. Thus, when Mario Paz, the editor of this handbook, asked me to write a Foreword, I was interested and honored by his request. Worldwide, people are beginning to understand the severity of the danger to present and future generations caused by the destruction of the environment. Earthquakes pose a similar threat; thus, the proper use of methods for earthquake-resistant design and construction is vitally important for countries that are at high risk of being subjected to strong-motion earthquakes. Most seismic activity is the result of tectonic earthquakes. Tectonic earthquakes are very special events in that, although they occur frequently, their probability of becoming natural hazards for a specific urban area is very small. When a severe earthquake does occur near an urban area, however, its consequences are very large in terms of structural destruction and human suffering.





Book Description




Análisis y diseño sísmico de edificios


Book Description

En el presente texto se ilustra el procedimiento de análisis y diseño sísmico de un edificio de acuerdo con el Reglamento Colombiano de Construcciones Sismo Resistentes, NSR-10. Se desarrolla un modelo analítico lineal de pórticos tridimensionales, se analiza una estructura en el espacio y se ilustra y desarrolla el diseño y detalle de los diferentes elementos que lo conforman como son las columnas, vigas, nudos y muros. No sólo se aplica la norma sino que se discuten sus disposiciones y se compara con las normas de otros países.




Earthquake Resistant Engineering Structures VI


Book Description

The problem of protecting the built environment in earthquake-prone regions of the world involves not only the optimal design and construction of new facilities, but also the upgrading and rehabilitation of existing structures and infrastructures. The latter is a laborious and expensive task, which can be accomplished only gradually. However, the inestimable loss of life and the colossal costs following a major earthquake in a metropolitan area provide sufficient reason to make it an important challenge for the scientific and technical community.Containing papers presented at the Sixth International Conference on Earthquake Resistance and Engineering Structures, this book will be invaluable to engineers, scientists and managers working in industry, academia, research organizations and governments. The book encompasses a wide range of topics such as: Site Effects and Geotechnical aspects; Earthquake resistant design; Seismic Behaviour and Vulnerability; Structural Dynamics; Monitoring and Testing; Bridges; Heritage Buildings; Masonry Construction; Retrofitting; Passive Protection Devices and Seismic Isolation; Lifelines; Design Codes and Response Spectre.




Seismic Control Systems


Book Description

Earthquakes remain largely unpredictable and potentially catastrophic, a matter of continuous concern to communities in affected zones. Scientists and engineers have made a considerable effort to mitigate their consequences through the design of effective protective devices. New concepts have recently been developed to address the requirements for better structural performance and a more effective use of new materials at a lower cost.This book disseminates knowledge and increases awareness on this very critical subject and thus ultimately contributes to a safer structural design against earthquakes. It comprises a number of articles taken from recent editions of Transactions of the Wessex Institute covering a wide range of topics within the subject of seismic protection through vibration control devices.The first four papers provide a very comprehensive review of existing seismic control designs highlighting their variety, the effectiveness of their performance, as well as the extent of their use for the protection of various types of structures world wide. Most articles deal with anti-seismic devices implementing passive control of structural response through seismic isolation and energy dissipation. Testing and modelling energy-dissipating systems are also extensively covered in the book.It is also important to understand how existing structures fitted with seismic control devices perform against earthquakes. Two such case studies are included in the book; a roof isolated from the top of an existing structure and a bridge supported on both isolating and damping systems. Finally, new analytical approaches for optimising the performance of tuned mass dampers are detailed in two companion papers.




Hydro-Environmental Analysis


Book Description

Focusing on fundamental principles, Hydro-Environmental Analysis: Freshwater Environments presents in-depth information about freshwater environments and how they are influenced by regulation. It provides a holistic approach, exploring the factors that impact water quality and quantity, and the regulations, policy and management methods that are necessary to maintain this vital resource. It offers a historical viewpoint as well as an overview and foundation of the physical, chemical, and biological characteristics affecting the management of freshwater environments. The book concentrates on broad and general concepts, providing an interdisciplinary foundation. The author covers the methods of measurement and classification; chemical, physical, and biological characteristics; indicators of ecological health; and management and restoration. He also considers common indicators of environmental health; characteristics and operations of regulatory control structures; applicable laws and regulations; and restoration methods. The text delves into rivers and streams in the first half and lakes and reservoirs in the second half. Each section centers on the characteristics of those systems and methods of classification, and then moves on to discuss the physical, chemical, and biological characteristics of each. In the section on lakes and reservoirs, it examines the characteristics and operations of regulatory structures, and presents the methods commonly used to assess the environmental health or integrity of these water bodies. It also introduces considerations for restoration, and presents two unique aquatic environments: wetlands and reservoir tailwaters. Written from an engineering perspective, the book is an ideal introduction to the aquatic and limnological sciences for students of environmental science, as well as students of environmental engineering. It also serves as a reference for engineers and scientists involved in the management, regulation, or restoration of freshwater environments.




Performance-Based Seismic Engineering: Vision for an Earthquake Resilient Society


Book Description

The Bled workshops have traditionally produced reference documents providing visions for the future development of earthquake engineering as foreseen by leading researchers in the field. The participants of the 2011 workshop built on the tradition of these events initiated by Professors Fajfar and Krawinkler to honor their important research contributions and have now produced a book providing answers to crucial questions in today’s earthquake engineering: “What visible changes in the design practice have been brought about by performance-based seismic engineering? What are the critical needs for future advances? What actions should be taken to respond to those needs?” The key answer is that research interests should go beyond the narrow technical aspects and that the seismic resilience of society as a whole should become an essential part of the planning and design process. The book aims to provide essential guidelines for researchers, professionals and students in the field of earthquake engineering. It will also be of particular interest for all those working at insurance companies, governmental, civil protection and emergency management agencies that are responsible for assessing and planning community resilience. The introductory chapter of the book is based on the keynote presentation given at the workshop by the late Professor Helmut Krawinkler. As such, the book includes Helmut’s last and priceless address to the engineering community, together with his vision and advice for the future development of performance-based design, earthquake engineering and seismic risk management.




Principles of Disaster Mitigation in Health Facilities


Book Description

This book focuses on problems encountered in areas of high risk for seismic events. It introduces the essential aspects of carrying out vulnerability assessments and applying practical measures to mitigate damage in hospitals addressing structural and nonstructural aspects as well as administrative and internal organization. In a period of only 15 years between 1981 and 1996 93 hospitals and 538 health care centers in Latin America and the Caribbean were damaged as a consequence of natural disasters. The direct cost of these disasters has been enormous; just as devastating has been the social impact of the loss of these critical facilities at a time when they were most needed. For these reasons special consideration must be given to disaster planning for these facilities. Assessing and reducing their vulnerability to natural hazards is indispensable. Principles of Disaster Mitigation in Health Facilities is an updated compilation of various documents on the topic already published by PAHO/WHO. Sections of previous publications have been revised to address the needs of professionals from a variety of disciplines particularly those involved in health facility planning operation and maintenance. Figures and photographs illustrate situations that can increase disaster vulnerability in health facilities. Examples are given of how countries in Latin America have conducted vulnerability assessments and applied specific disaster mitigation measures in their hospitals and health centers.




Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures


Book Description

Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures contains the plenary lectures and papers presented at the 11th International Conference on STRUCTURAL SAFETY AND RELIABILITY (ICOSSAR2013, New York, NY, USA, 16-20 June 2013), and covers major aspects of safety, reliability, risk and life-cycle performance of str




Earthquake Ground Motion


Book Description

The best way to minimize damage from earthquakes is to predict their location and effects and reinforce against those possible effects. Toward that end, this book presents prediction methods useful for the design of earthquake-resistant structures. In the first of two parts, the book deals with issues relating to the characterisation and the rational definition of seismic input. It begins with a study of earthquake records that leads to the identification of their damage potential parameters, such as the peak ground acceleration and the strong motion duration. Subsequent chapters concern themselves with the deterministic and probabilistic methodologies for producing seismic inputs. Further chapters are dedicated to the generation of artificial seismic input on the basis of stochastic or probabilistic approaches. The second part of this volume deals with the effects of ground motion on foundation elements and structural integrity. Particular emphasis is given to the interaction of foundation piles with vibrating soils, homogeneous or heterogeneous. The final two chapters are concerned with the possible connection between soil structure interaction (SSI) and structural damage. In both instances records of actual earthquake induced motion are used for such assessments.