Disorder and Critical Phenomena Through Basic Probability Models


Book Description

Understanding the effect of disorder on critical phenomena is a central issue in statistical mechanics. In probabilistic terms: what happens if we perturb a system exhibiting a phase transition by introducing a random environment? The physics community has approached this very broad question by aiming at general criteria that tell whether or not the addition of disorder changes the critical properties of a model: some of the predictions are truly striking and mathematically challenging. We approach this domain of ideas by focusing on a specific class of models, the "pinning models," for which a series of recent mathematical works has essentially put all the main predictions of the physics community on firm footing; in some cases, mathematicians have even gone beyond, settling a number of controversial issues. But the purpose of these notes, beyond treating the pinning models in full detail, is also to convey the gist, or at least the flavor, of the "overall picture," which is, in many respects, unfamiliar territory for mathematicians.




Disorder and Critical Phenomena Through Basic Probability Models


Book Description

Understanding the effect of disorder on critical phenomena is a central issue in statistical mechanics. In probabilistic terms: what happens if we perturb a system exhibiting a phase transition by introducing a random environment? The physics community has approached this very broad question by aiming at general criteria that tell whether or not the addition of disorder changes the critical properties of a model: some of the predictions are truly striking and mathematically challenging. We approach this domain of ideas by focusing on a specific class of models, the "pinning models," for which a series of recent mathematical works has essentially put all the main predictions of the physics community on firm footing; in some cases, mathematicians have even gone beyond, settling a number of controversial issues. But the purpose of these notes, beyond treating the pinning models in full detail, is also to convey the gist, or at least the flavor, of the "overall picture," which is, in many respects, unfamiliar territory for mathematicians.




Stochastic Dynamics Out of Equilibrium


Book Description

Stemming from the IHP trimester "Stochastic Dynamics Out of Equilibrium", this collection of contributions focuses on aspects of nonequilibrium dynamics and its ongoing developments. It is common practice in statistical mechanics to use models of large interacting assemblies governed by stochastic dynamics. In this context "equilibrium" is understood as stochastically (time) reversible dynamics with respect to a prescribed Gibbs measure. Nonequilibrium dynamics correspond on the other hand to irreversible evolutions, where fluxes appear in physical systems, and steady-state measures are unknown. The trimester, held at the Institut Henri Poincaré (IHP) in Paris from April to July 2017, comprised various events relating to three domains (i) transport in non-equilibrium statistical mechanics; (ii) the design of more efficient simulation methods; (iii) life sciences. It brought together physicists, mathematicians from many domains, computer scientists, as well as researchers working at the interface between biology, physics and mathematics. The present volume is indispensable reading for researchers and Ph.D. students working in such areas.




Directed Polymers in Random Environments


Book Description

Analyzing the phase transition from diffusive to localized behavior in a model of directed polymers in a random environment, this volume places particular emphasis on the localization phenomenon. The main questionis: What does the path of a random walk look like if rewards and penalties are spatially randomly distributed?This model, which provides a simplified version of stretched elastic chains pinned by random impurities, has attracted much research activity, but it (and its relatives) still holds many secrets, especially in high dimensions. It has non-gaussian scaling limits and it belongs to the so-called KPZ universality class when the space is one-dimensional. Adopting a Gibbsian approach, using general and powerful tools from probability theory, the discrete model is studied in full generality. Presenting the state-of-the art from different perspectives, and written in the form of a first course on the subject, this monograph is aimed at researchers in probability or statistical physics, but is also accessible to masters and Ph.D. students.




Random Perturbation of PDEs and Fluid Dynamic Models


Book Description

The book deals with the random perturbation of PDEs which lack well-posedness, mainly because of their non-uniqueness, in some cases because of blow-up. The aim is to show that noise may restore uniqueness or prevent blow-up. This is not a general or easy-to-apply rule, and the theory presented in the book is in fact a series of examples with a few unifying ideas. The role of additive and bilinear multiplicative noise is described and a variety of examples are included, from abstract parabolic evolution equations with non-Lipschitz nonlinearities to particular fluid dynamic models, like the dyadic model, linear transport equations and motion of point vortices.




Critical Phenomena in Natural Sciences


Book Description

A modern up-to-date introduction for readers outside statistical physics. It puts emphasis on a clear understanding of concepts and methods and provides the tools that can be of immediate use in applications.




Disorder And Competition In Soluble Lattice Models


Book Description

At present, existing literature on this subject matter can only be said to relate in minor areas to this work. Important concepts in statistical mechanics, such as frustration, localization, Lifshitz and Griffiths singularities, multicritical points, modulated phases, superselection sectors, spontaneous symmetry breaking and the Haldane phase, strange attractors and the Hausdorff dimension, and many others, are illustrated by exactly soluble lattice models. There are examples of simple lattice models which are shown to give rise to spectacular phase diagrams, with multicritical points and sequences of modulated phases. The models are chosen to enable a concise exposition as well as a connection with real physical systems (as dilute antiferromagnets, spin glasses and modulated magnets). A brief introduction to the properties of dynamical systems, an overview of conformal invariance and the Bethe Ansatz and a discussion of some general methods of statistical mechanics related to spontaneous symmetry breaking, are included in the appendices. A number of exercises are included in the text to help the comprehension of the most representative issues.




Quantum Theory of Collective Phenomena


Book Description

Systematic three-part treatment covers generalized quantum mechanical framework, statistical thermodynamics, and collective phenomena. "Excellent." — Physics Today. "One of the best introductions to the subject." — Physics Bulletin. 1989 edition.




Order, Disorder, And Criticality: Advanced Problems Of Phase Transition Theory


Book Description

This book reviews some of the classic aspects in the theory of phase transitions and critical phenomena, which has a long history. Recently, these aspects are attracting much attention due to essential new contributions. The topics presented in this book include: mathematical theory of the Ising model; equilibrium and non-equilibrium criticality of one-dimensional quantum spin chains; influence of structural disorder on the critical behaviour of the Potts model; criticality, fractality and multifractality of linked polymers; field-theoretical approaches in the superconducting phase transitions.The book is based on the review lectures that were given in Lviv (Ukraine) in March 2002 at the “Ising lectures” — a traditional annual workshop on phase transitions and critical phenomena which aims to bring together scientists working in the field of phase transitions with university students and those who are interested in the subject.




Field Theory, The Renormalization Group, And Critical Phenomena: Graphs To Computers (3rd Edition)


Book Description

This volume links field theory methods and concepts from particle physics with those in critical phenomena and statistical mechanics, the development starting from the latter point of view. Rigor and lengthy proofs are trimmed by using the phenomenological framework of graphs, power counting, etc., and field theoretic methods with emphasis on renormalization group techniques. Non-perturbative methods and numerical simulations are introduced in this new edition. Abundant references to research literature complement this matter-of-fact approach. The book introduces quantum field theory to those already grounded in the concepts of statistical mechanics and advanced quantum theory, with sufficient exercises in each chapter for use as a textbook in a one-semester graduate course.The following new chapters are included:I. Real Space MethodsII. Finite Size ScalingIII. Monte Carlo Methods. Numerical Field Theory