Disposition of High-Level Radioactive Waste Through Geological Isolation


Book Description

During the next several years, decisions are expected to be made in several countries on the further development and implementation of the geological disposition option. The Board on Radioactive Waste Management (BRWM) of the U.S. National Academies believes that informed and reasoned discussion of relevant scientific, engineering and social issues can-and should-play a constructive role in the decision process by providing information to decision makers on relevant technical and policy issues. A BRWM-initiated project including a workshop at Irvine, California on November 4-5, 1999, and subsequent National Academies' report to be published in spring, 2000, are intended to provide such information to national policy makers both in the U.S. and abroad. To inform national policies, it is essential that experts from the physical, geological, and engineering sciences, and experts from the policy and social science communities work together. Some national programs have involved social science and policy experts from the beginning, while other programs have only recently recognized the importance of this collaboration. An important goal of the November workshop is to facilitate dialogue between these communities, as well as to encourage the sharing of experiences from many national programs. The workshop steering committee has prepared this discussion for participants at the workshop. It should elicit critical comments and help identify topics requiring in-depth discussion at the workshop. It is not intended as a statement of findings, conclusions, or recommendations. It is rather intended as a vehicle for stimulating dialogue among the workshop participants. Out of that dialogue will emerge the findings, conclusions, and recommendations of the National Academies' report.




Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste


Book Description

Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, Second Edition, critically reviews state-of-the-art technologies and scientific methods relating to the implementation of the most effective approaches to the long-term, safe disposition of nuclear waste, also discussing regulatory developments and social engagement approaches as major themes. Chapters in Part One introduce the topic of geological disposal, providing an overview of near-surface, intermediate depth, and deep borehole disposal, spanning low-, medium- and high-level wastes. Part Two addresses the different types of repository systems – crystalline, clay, and salt, also discussing methods of site surveying and construction. The critical safety issue of engineered barrier systems is the focus of Part Three, with coverage ranging from nuclear waste canisters, to buffer and backfill materials. Lastly, Parts Four and Five focus on safety, security, and acceptability, concentrating on repository performance assessment, then radiation protection, environmental monitoring, and social engagement. Comprehensively revised, updated, and expanded with 25% new material on topics of current importance, this is the standard reference for all nuclear waste management and geological repository professionals and researchers. - Contains 25% more material on topics of current importance in this new, comprehensive edition - Fully updated coverage of both near-surface/intermediate depth, and deep borehole disposal in one convenient volume - Goes beyond the scientific and technical aspects of disposal to include the political, regulatory, and societal issues involved, all from an international perspective




Too Hot to Touch


Book Description

A fascinating and authoritative account of the controversies and possibilities surrounding nuclear waste disposal, providing expert discussion in down-to-earth language.




Disposition of High-Level Waste and Spent Nuclear Fuel


Book Description

Focused attention by world leaders is needed to address the substantial challenges posed by disposal of spent nuclear fuel from reactors and high-level radioactive waste from processing such fuel. The biggest challenges in achieving safe and secure storage and permanent waste disposal are societal, although technical challenges remain. Disposition of radioactive wastes in a deep geological repository is a sound approach as long as it progresses through a stepwise decision-making process that takes advantage of technical advances, public participation, and international cooperation. Written for concerned citizens as well as policymakers, this book was sponsored by the U.S. Department of Energy, U.S. Nuclear Regulatory Commission, and waste management organizations in eight other countries.




Geological Disposal of Radioactive Wastes and Natural Analogues


Book Description

Many countries are currently exploring the option to dispose of highly radioactive solid wastes deep underground in purpose built, engineered repositories. A number of surface and shallow repositories for less radioactive wastes are already in operation. One of the challenges facing the nuclear industry is to demonstrate confidently that a repository will contain wastes for so long that any releases that might take place in the future will pose no significant health or environmental risk. One method for building confidence in the long-term future safety of a repository is to look at the physical and chemical processes which operate in natural and archaeological systems, and to draw appropriate parallels with the repository. For example, to understand why some uranium orebodies have remained isolated underground for billions of years. Such studies are called 'natural analogues'. This book investigates the concept of geological disposal and examines the wide range of natural analogues which have been studied. Lessons learnt from studies of archaeological and natural systems can be used to improve our capabilities for assessing the future safety of a radioactive waste repository.




Near Surface Disposal Facilities for Radioactive Waste


Book Description

This Safety Guide provides recommendations on how to meet safety requirements on the disposal of radioactive waste. It is concerned with the disposal of solid radioactive waste by emplacement in designated facilities at or near the land surface. The Safety Guide provides guidance on the development, operation and closure of, and on the regulatory control of, near surface disposal facilities, which are suitable for the disposal of very low level waste and low level waste. The Safety Guide provides guidance on a range of disposal methods, including the emplacement of solid radioactive waste in earthen trenches, in above ground engineered structures, in engineered structures just below the ground surface and in rock caverns, silos and tunnels excavated at depths of up to a few tens of metres underground. It is intended for use primarily by those involved with policy development for, with the regulatory control of, and with the development and operation of near surface disposal facilities.




Radioactive Waste Disposal and Geology


Book Description

The perception of radioactive waste as a major problem for the industrial world has developed only recently. Four decades ago the disposal of such waste was regarded as a relatively minor matter. Those were the heady days when nuclear fission seemed the answer to the world's energy needs: the two wartime bombs had demonstrated its awesome power, and now it was to be harnessed for the production of electricity, the excavation of canals, even the running of cars and airplanes. In all applications of fission some waste containing radioactive elements would be generated of course, but it seemed only a trivial annoyance, a problem whose solution could be deferred until the more exciting challenges of constructing reactors and devising more efficient weapons had been mastered. So waste accumulated, some in tanks and some buried in shallow trenches. These were recognized as only temporary, makeshift measures, because it was known that the debris would be hazardous to its surroundings for many thousands of years and hence that more permanent disposal would someday be needed. The difficulty of accomplishing this more lasting disposal only gradually became apparent. The difficulty has been compounded by uncertainty about the physiological effects oflow-Ievel radiation, by the inadequacy of detailed knowledge about the behavior of engineered and geologic materials over long periods under unusual conditions, and by the sensitization of popular fears about radiation in all its forms following widely publicized reactor accidents and leaks from waste storage sites.







Uncertainty Underground


Book Description

Experts from science, industry, and government discuss the unresolved scientific and technical issues surrounding the Yucca Mountain site as a geologic repository for high-level nuclear waste.