Distance Sampling: Methods and Applications


Book Description

In this book, the authors cover the basic methods and advances within distance sampling that are most valuable to practitioners and in ecology more broadly. This is the fourth book dedicated to distance sampling. In the decade since the last book published, there have been a number of new developments. The intervening years have also shown which advances are of most use. This self-contained book covers topics from the previous publications, while also including recent developments in method, software and application. Distance sampling refers to a suite of methods, including line and point transect sampling, in which animal density or abundance is estimated from a sample of distances to detected individuals. The book illustrates these methods through case studies; data sets and computer code are supplied to readers through the book’s accompanying website. Some of the case studies use the software Distance, while others use R code. The book is in three parts. The first part addresses basic methods, the design of surveys, distance sampling experiments, field methods and data issues. The second part develops a range of modelling approaches for distance sampling data. The third part describes variations in the basic method; discusses special issues that arise when sampling different taxa (songbirds, seabirds, cetaceans, primates, ungulates, butterflies, and plants); considers advances to deal with failures of the key assumptions; and provides a check-list for those conducting surveys.




Distance Sampling


Book Description

Our environment and natural food resources are continually coming under threat so that the monitoring of population trends is essential today. Whaling is a good example. Here politics and conservation often clash, and over the years more and more restrictions have been applied through the efforts of the International Whaling Commission in an endeavour to save some of our whale species from extinction. Localized fisheries also need to be monitored and quotas set each year. In some countries, sports fishing and hunting are popular so that information is needed about the populations being exploited in order to determine such things as the duration of hunting season and bag limits. Methods of estimating animal abundance have been developing steadily since the 1940s but over the last 20 years activity in this area has intensified and of this growth were two the subject has begun to blossom. At the centre of the authors of this book, David Anderson and Kenneth Burnham, who have widely published in this field. The need for computers in this area was soon recognized and David and Ken were joined by Jeffrey Laake who, with his computing expertise, helped to develop suitable software packages for implementing some of the new techniques. In the 1980s Stephen Buckland entered the arena and began to make his presence felt. Among other contributions, he firmly established the role of Monte Carlo and bootstrapping techniques in population estimation where the unique role of the computer could be fully exploited.




Advanced Distance Sampling


Book Description

This advanced text focuses on the uses of distance sampling to estimate the density and abundance of biological populations. It addresses new methodologies, new technologies and recent developments in statistical theory and is the follow up companion to Introduction to Distance Sampling (OUP,2001).In this text, a general theoretical basis is established for methods of estimating animal abundance from sightings surveys, and a wide range of approaches to analysis of sightings data is explored. These approaches include: modelling animal detectability as a function of covariates, where theeffects of habitat, observer, weather, etc. on detectability can be assessed; estimating animal density as a function of location, allowing for example animal density to be related to habitat and other locational covariates; estimating change over time in populations, a necessary aspect of anymonitoring programme; estimation when detection of animals on the line or at the point is uncertain, as often occurs for marine populations, or when the survey region has dense cover; survey design and automated design algorithms, allowing rapid generation of sound survey designs using geographicinformation systems; adaptive distance sampling methods, which concentrate survey effort in areas of high animal density; passive distance sampling methods, which extend the application of distance sampling to species that cannot be readily detected in sightings surveys, but can be trapped; andtesting of methods by simulation, so that performance of the approach in varying circumstances can be assessed.




Advanced Distance Sampling


Book Description

This advanced text focuses on the uses of distance sampling to estimate the density and abundance of biological populations. It addresses new methodologies, new technologies and recent developments in statistical theory and is the follow up companion to Introduction to Distance Sampling (OUP, 2001). In this text, a general theoretical basis is established for methods of estimating animal abundance from sightings surveys, and a wide range of approaches to analysis of sightings data is explored. These approaches include: modelling animal detectability as a function of covariates, where the effects of habitat, observer, weather, etc. on detectability can be assessed; estimating animal density as a function of location, allowing for example animal density to be related to habitat and other locational covariates; estimating change over time in populations, a necessary aspect of any monitoring programme; estimation when detection of animals on the line or at the point is uncertain, as often occurs for marine populations, or when the survey region has dense cover; survey design and automated design algorithms, allowing rapid generation of sound survey designs using geographic information systems; adaptive distance sampling methods, which concentrate survey effort in areas of high animal density; passive distance sampling methods, which extend the application of distance sampling to species that cannot be readily detected in sightings surveys, but can be trapped; and testing of methods by simulation, so that performance of the approach in varying circumstances can be assessed.




Acceptance Sampling in Quality Control


Book Description

Acceptance Sampling in Quality Control, Third Edition presents the state of the art in the methodology of sampling while integrating both theory and best practices. It discusses various standards, including those from the ISO, MIL-STD and ASTM and explores how to set quality levels. The book also includes problems at the end of each chapter with solutions. This edition improves upon the previous editions especially in the areas of software applications and compliance sampling plans. New to the Third Edition: Numerous Microsoft Excel templates to address sampling plans are used. Commercial software applications are discussed at the end of many chapters. Discussion of quick switching systems has been expanded to account for the considerable recent activity in this area. Added discussion of zero acceptance number chained quick switching systems.




Measuring Abundance


Book Description

Measuring the abundance of individuals and the diversity of species are core components of most ecological research projects and conservation monitoring. This book brings together in one place, for the first time, the methods used to estimate the abundance of individuals in nature. The statistical basis of each method is detailed along with practical considerations for survey design and data collection. Methods are illustrated using data ranging from Alaskan shrubs to Yellowstone grizzly bears, not forgetting Costa Rican ants and Prince Edward Island lobsters. Where necessary, example code for use with the open source software R is supplied. When appropriate, reference is made to other widely used programs. After opening with a brief synopsis of relevant statistical methods, the first section deals with the abundance of stationary items such as trees, shrubs, coral, etc. Following a discussion of the use of quadrats and transects in the contexts of forestry sampling and the assessment of plant cover, there are chapters addressing line-intercept sampling, the use of nearest-neighbour distances, and variable sized plots. The second section deals with individuals that move, such as birds, mammals, reptiles, fish, etc. Approaches discussed include double-observer sampling, removal sampling, capture-recapture methods and distance sampling. The final section deals with the measurement of species richness; species diversity; species-abundance distributions; and other aspects of diversity such as evenness, similarity, turnover and rarity. This is an essential reference for anyone involved in advanced undergraduate or postgraduate ecological research and teaching, or those planning and carrying out data analysis as part of conservation survey and monitoring programmes.




Hierarchical Modeling and Inference in Ecology


Book Description

A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods.This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures.The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution* abundance models based on many sampling protocols, including distance sampling* capture-recapture models with individual effects* spatial capture-recapture models based on camera trapping and related methods* population and metapopulation dynamic models* models of biodiversity, community structure and dynamics - Wide variety of examples involving many taxa (birds, amphibians, mammals, insects, plants) - Development of classical, likelihood-based procedures for inference, as well as Bayesian methods of analysis - Detailed explanations describing the implementation of hierarchical models using freely available software such as R and WinBUGS - Computing support in technical appendices in an online companion web site




Spatial Capture-Recapture


Book Description

Spatial Capture-Recapture provides a comprehensive how-to manual with detailed examples of spatial capture-recapture models based on current technology and knowledge. Spatial Capture-Recapture provides you with an extensive step-by-step analysis of many data sets using different software implementations. The authors' approach is practical – it embraces Bayesian and classical inference strategies to give the reader different options to get the job done. In addition, Spatial Capture-Recapture provides data sets, sample code and computing scripts in an R package. - Comprehensive reference on revolutionary new methods in ecology makes this the first and only book on the topic - Every methodological element has a detailed worked example with a code template, allowing you to learn by example - Includes an R package that contains all computer code and data sets on companion website




Population Ecology in Practice


Book Description

A synthesis of contemporary analytical and modeling approaches in population ecology The book provides an overview of the key analytical approaches that are currently used in demographic, genetic, and spatial analyses in population ecology. The chapters present current problems, introduce advances in analytical methods and models, and demonstrate the applications of quantitative methods to ecological data. The book covers new tools for designing robust field studies; estimation of abundance and demographic rates; matrix population models and analyses of population dynamics; and current approaches for genetic and spatial analysis. Each chapter is illustrated by empirical examples based on real datasets, with a companion website that offers online exercises and examples of computer code in the R statistical software platform. Fills a niche for a book that emphasizes applied aspects of population analysis Covers many of the current methods being used to analyse population dynamics and structure Illustrates the application of specific analytical methods through worked examples based on real datasets Offers readers the opportunity to work through examples or adapt the routines to their own datasets using computer code in the R statistical platform Population Ecology in Practice is an excellent book for upper-level undergraduate and graduate students taking courses in population ecology or ecological statistics, as well as established researchers needing a desktop reference for contemporary methods used to develop robust population assessments.




Quantitative Methods for Current Environmental Issues


Book Description

It is increasingly clear that good quantitative work in the environmental sciences must be genuinely interdisciplinary. This volume, the proceedings of the first combined TIES/SPRUCE conference held at the University of Sheffield in September 2000, well demonstrates the truth of this assertion, highlighting the successful use of both statistics and mathematics in important practical problems. It brings together distinguished scientists and engineers to present the most up-to-date and practical methods for quantitative measurement and prediction and is organised around four themes: - spatial and temporal models and methods; - environmental sampling and standards; - atmosphere and ocean; - risk and uncertainty. Quantitative Methods for Current Environmental Issues is an invaluable resource for statisticians, applied mathematicians and researchers working on environmental problems, and for those in government agencies and research institutes involved in the analysis of environmental issues.