Distributed Energy Resources in Microgrids


Book Description

Distributed Energy Resources in Microgrids: Integration, Challenges and Optimization unifies classically unconnected aspects of microgrids by considering them alongside economic analysis and stability testing. In addition, the book presents well-founded mathematical analyses on how to technically and economically optimize microgrids via distributed energy resource integration. Researchers and engineers in the power and energy sector will find this information useful for combined scientific and economical approaches to microgrid integration. Specific sections cover microgrid performance, including key technical elements, such as control design, stability analysis, power quality, reliability and resiliency in microgrid operation. Addresses the challenges related to the integration of renewable energy resources Includes examples of control algorithms adopted during integration Presents detailed methods of optimization to enhance successful integration




The Law of Distributed Generation


Book Description

"The transformation of the electric grid from the traditional central station model to a more dynamic and interconnected system of distributed generation and distribution is a huge change in our lives, and yet one that is barely noticeable in day-to-day life unless you actually are looking for it. If you are looking, though, the rate of change is breathtaking. I know this first hand because in the roughly three years we have been working on this book the landscape already has evolved dramatically. In this time, topics we thought were interesting, such as battery storage, became drivers to the discussion while other topics faded in relevance. Indeed, one of the challenges of writing this book is our effort to assemble information that would remain interesting and useful to readers even as the technology and the law advanced. With the help of all of the authors and other contributors to this project, I think we have achieved this"--




Integration of Distributed Energy Resources in Power Systems


Book Description

Integration of Distributed Energy Resources in Power Systems: Implementation, Operation and Control covers the operation of power transmission and distribution systems and their growing difficulty as the share of renewable energy sources in the world’s energy mix grows and the proliferation trend of small scale power generation becomes a reality. The book gives students at the graduate level, as well as researchers and power engineering professionals, an understanding of the key issues necessary for the development of such strategies. It explores the most relevant topics, with a special focus on transmission and distribution areas. Subjects such as voltage control, AC and DC microgrids, and power electronics are explored in detail for all sources, while not neglecting the specific challenges posed by the most used variable renewable energy sources. Presents the most relevant aspects of the integration of distributed energy into power systems, with special focus on the challenges for transmission and distribution Explores the state-of the-art in applications of the most current technology, giving readers a clear roadmap Deals with the technical and economic features of distributed energy resources and discusses their business models




Integration of Renewable and Distributed Energy Resources in Power Systems


Book Description

The electric power sector is poised for transformative changes. Improvements in the cost and performance of a range of distributed energy generation (DG) technologies and the potential for breakthroughs in distributed energy storage (DS) are creating new options for onsite power generation and storage, driving increasing adoption and impacting utility distribution system operations. In addition, changing uses and use patterns for electricity—from plug-in electric vehicles (EVs) to demand response (DR)—are altering demands placed on the electric power system. Finally, the infusion of new information and communications technology (ICT) into the electric system and its markets is enabling the collection of immense volumes of data on power sector operations and use; unprecedented control of generation, networks, and loads; and new opportunities for the delivery of energy services. In this Special Issue of Energies, research papers on topics related to the integration of distributed energy resources (DG, DS, EV, and DR) are included. From technologies to software tools to system-wide evaluations, the impacts of all aforementioned distributed resources on both operation and planning are examined.




Distributed Energy Resources in Local Integrated Energy Systems


Book Description

Distributed Energy Resources in Local Integrated Energy Systems: Optimal Operation and Planning reviews research and policy developments surrounding the optimal operation and planning of DER in the context of local integrated energy systems in the presence of multiple energy carriers, vectors and multi-objective requirements. This assessment is carried out by analyzing impacts and benefits at local levels, and in distribution networks and larger systems. These frameworks represent valid tools to provide support in the decision-making process for DER operation and planning. Uncertainties of RES generation and loads in optimal DER scheduling are addressed, along with energy trading and blockchain technologies. Interactions among various energy carriers in local energy systems are investigated in scalable and flexible optimization models for adaptation to a number of real contexts thanks to the wide variety of generation, conversion and storage technologies considered, the exploitation of demand side flexibility, emerging technologies, and through the general mathematical formulations established. Integrates multi-energy DER, including electrical and thermal distributed generation, demand response, electric vehicles, storage and RES in the context of local integrated energy systems Fosters the integration of DER in the electricity markets through the concepts of DER aggregation Addresses the challenges of emerging paradigms as energy communities and energy blockchain applications in the current and future energy landscape Proposes operation optimization models and methods through multi-objective approaches for fostering short- and long-run sustainability of local energy systems Assesses and models the uncertainties of renewable resources and intermittent loads in the short-term decision-making process for smart decentralized energy systems




Distributed Energy Resources A Complete Guide - 2020 Edition


Book Description

What should the next improvement project be that is related to Distributed Energy Resources? What qualifications do Distributed Energy Resources leaders need? What are the key enablers to make this Distributed Energy Resources move? How do you measure efficient delivery of Distributed Energy Resources services? What happens if Distributed Energy Resources's scope changes? Defining, designing, creating, and implementing a process to solve a challenge or meet an objective is the most valuable role... In EVERY group, company, organization and department. Unless you are talking a one-time, single-use project, there should be a process. Whether that process is managed and implemented by humans, AI, or a combination of the two, it needs to be designed by someone with a complex enough perspective to ask the right questions. Someone capable of asking the right questions and step back and say, 'What are we really trying to accomplish here? And is there a different way to look at it?' This Self-Assessment empowers people to do just that - whether their title is entrepreneur, manager, consultant, (Vice-)President, CxO etc... - they are the people who rule the future. They are the person who asks the right questions to make Distributed Energy Resources investments work better. This Distributed Energy Resources All-Inclusive Self-Assessment enables You to be that person. All the tools you need to an in-depth Distributed Energy Resources Self-Assessment. Featuring 955 new and updated case-based questions, organized into seven core areas of process design, this Self-Assessment will help you identify areas in which Distributed Energy Resources improvements can be made. In using the questions you will be better able to: - diagnose Distributed Energy Resources projects, initiatives, organizations, businesses and processes using accepted diagnostic standards and practices - implement evidence-based best practice strategies aligned with overall goals - integrate recent advances in Distributed Energy Resources and process design strategies into practice according to best practice guidelines Using a Self-Assessment tool known as the Distributed Energy Resources Scorecard, you will develop a clear picture of which Distributed Energy Resources areas need attention. Your purchase includes access details to the Distributed Energy Resources self-assessment dashboard download which gives you your dynamically prioritized projects-ready tool and shows your organization exactly what to do next. You will receive the following contents with New and Updated specific criteria: - The latest quick edition of the book in PDF - The latest complete edition of the book in PDF, which criteria correspond to the criteria in... - The Self-Assessment Excel Dashboard - Example pre-filled Self-Assessment Excel Dashboard to get familiar with results generation - In-depth and specific Distributed Energy Resources Checklists - Project management checklists and templates to assist with implementation INCLUDES LIFETIME SELF ASSESSMENT UPDATES Every self assessment comes with Lifetime Updates and Lifetime Free Updated Books. Lifetime Updates is an industry-first feature which allows you to receive verified self assessment updates, ensuring you always have the most accurate information at your fingertips.




Optimal Planning and Operation of Distributed Energy Resources


Book Description

The book deals with integrated distributed energy resources in existing power systems optimally to mitigate power quality issues in power systems. The book is designed for research using modern optimization techniques and a thorough analysis of renewable energy. The book provides an in-depth study of recent trends of research scope around the globe and also includes modern heuristic approaches, hands-on data, and case studies of all important dimensions of distributed energy resources. It addresses key issues such as the integration of DERs and electric vehicles, optimization algorithms, management of DERs with electric vehicles, energy pool management mechanisms, protection, and reliability in the restructured power system. This book will be useful for students, research scholars, practitioners, and academicians.




Distributed Energy Resources


Book Description

The future of the distributed energy generation market is promising, with opportunities in the residential, commercial, and industrial sectors driven by increasing awareness of clean energy, greenhouse gas (GHG) emission reduction targets, and rising global demand for energy. This book focuses on UN Sustainable Development Goal 7, which aims to "ensure access to affordable, reliable, sustainable, and modern energy for all." It provides research results, applications, and case studies on the potential of distributed energy resources as a solution to building a low-carbon society. Coverage includes modeling and evaluation of distributed power systems, system maintenance and reliability, economic potential and implications of hydrogen energy systems, grid stabilization and carbon emission reduction, smart design, and the impact of energy penetration on public power grids. Case studies include the effects of renewable energy policies on solar photovoltaic energy in China, Germany, Japan, and the United States of America and a feasibility assessment of distributed energy systems in Shanghai. Distributed Energy Resources: Solutions for a Low Carbon Society will be a valuable resource for postgraduate students and researchers in energy systems, urban energy management, and renewable energy technologies and a reference guide for practicing engineers, urban energy planners, and energy system managers.




Building an Effective Security Program for Distributed Energy Resources and Systems


Book Description

Building an Effective Security Program for Distributed Energy Resources and Systems Build a critical and effective security program for DERs Building an Effective Security Program for Distributed Energy Resources and Systems requires a unified approach to establishing a critical security program for DER systems and Smart Grid applications. The methodology provided integrates systems security engineering principles, techniques, standards, and best practices. This publication introduces engineers on the design, implementation, and maintenance of a security program for distributed energy resources (DERs), smart grid, and industrial control systems. It provides security professionals with understanding the specific requirements of industrial control systems and real-time constrained applications for power systems. This book: Describes the cybersecurity needs for DERs and power grid as critical infrastructure Introduces the information security principles to assess and manage the security and privacy risks of the emerging Smart Grid technologies Outlines the functions of the security program as well as the scope and differences between traditional IT system security requirements and those required for industrial control systems such as SCADA systems Offers a full array of resources— cybersecurity concepts, frameworks, and emerging trends Security Professionals and Engineers can use Building an Effective Security Program for Distributed Energy Resources and Systems as a reliable resource that is dedicated to the essential topic of security for distributed energy resources and power grids. They will find standards, guidelines, and recommendations from standards organizations, such as ISO, IEC, NIST, IEEE, ENISA, ISA, ISACA, and ISF, conveniently included for reference within chapters.




Operation of Distributed Energy Resources in Smart Distribution Networks


Book Description

Operation of Distributed Energy Resources in Smart Distribution Networks defines the barriers and challenges of smart distribution networks, ultimately proposing optimal solutions for addressing them. The book considers their use as an important part of future electrical power systems and their ability to improve the local flexibility and reliability of electrical systems. It carefully defines the concept as a radial network with a cluster of distributed energy generations, various types of loads, and energy storage systems. In addition, the book details how the huge penetration of distributed energy resources and the intermittent nature of renewable generations may cause system problems. Readers will find this to be an important resource that analyzes and introduces the features and problems of smart distribution networks from different aspects. Integrates different types of elements, including electrical vehicles, demand response programs, and various renewable energy sources in distribution networks Proposes optimal operational models for the short-term performance and scheduling of a distribution network Discusses the uncertainties of renewable resources and intermittent load in the decision-making process for distribution networks