Distributed Source Coding


Book Description

The advent of wireless sensor technology and ad-hoc networks has made DSC a major field of interest. Edited and written by the leading players in the field, this book presents the latest theory, algorithms and applications, making it the definitive reference on DSC for systems designers and implementers, researchers, and graduate students. This book gives a clear understanding of the performance limits of distributed source coders for specific classes of sources and presents the design and application of practical algorithms for realistic scenarios. Material covered includes the use of standard channel codes, such as LDPC and Turbo codes, to DSC, and discussion of the suitability of compressed sensing for distributed compression of sparse signals. Extensive applications are presented and include distributed video coding, microphone arrays and securing biometric data. Clear explanation of the principles of distributed source coding (DSC), a technology that has applications in sensor networks, ad-hoc networks, and distributed wireless video systems for surveillance Edited and written by the leading players in the field, providing a complete and authoritative reference Contains all the latest theory, practical algorithms for DSC design and the most recently developed applications




Distributed Source Coding


Book Description

Distributed source coding is one of the key enablers for efficient cooperative communication. The potential applications range from wireless sensor networks, ad-hoc networks, and surveillance networks, to robust low-complexity video coding, stereo/Multiview video coding, HDTV, hyper-spectral and multispectral imaging, and biometrics. The book is divided into three sections: theory, algorithms, and applications. Part one covers the background of information theory with an emphasis on DSC; part two discusses designs of algorithmic solutions for DSC problems, covering the three most important DSC problems: Slepian-Wolf, Wyner-Ziv, and MT source coding; and part three is dedicated to a variety of potential DSC applications. Key features: Clear explanation of distributed source coding theory and algorithms including both lossless and lossy designs. Rich applications of distributed source coding, which covers multimedia communication and data security applications. Self-contained content for beginners from basic information theory to practical code implementation. The book provides fundamental knowledge for engineers and computer scientists to access the topic of distributed source coding. It is also suitable for senior undergraduate and first year graduate students in electrical engineering; computer engineering; signal processing; image/video processing; and information theory and communications.




Joint Source-channel Video Transmission


Book Description

Examines the problem of joint source-channel video transmission - the joint optimal allocation of resources at the application layer and the other network layers, such as data rate adaptation, channel coding, power adaptation in wireless networks, quality of service (QoS) support from the network, and packet scheduling, for efficient video transmission.







Source Coding


Book Description

Source Coding is the first part of the two-part monograph Fundamentals of Source and Video Coding by Wiegand and Schwarz. It is devoted to the fundamental subject of source coding. Source Coding is a standalone text and also forms the basis for the second part, which describes the application of sources coding techniques to video coding. Based on a simple and accessible presentation of the fundamentals of information and rate distortion theory, the authors describe the subjects of entropy coding and quantization as well as predictive and transform coding. All relevant source coding results that are required for the understanding of today's video compression algorithms are established. The emphasis is on source coding techniques that have become relevant for video coding in recent years. To illustrate the concepts and efficiency of the basic sources coding techniques, the authors provide numerous examples and experimental results for simple model sources. In addition to widely known results, the text also offers some elements that are new or rarely covered in references on source coding today, which include: Huffman coding for variable-length symbol sequences and PIPE coding, scalar quantization in combination with advanced entropy coding techniques, a simple model for the rate distortion performance of entropy-constrained scalar quantization for Gaussian sources that is valid over the entire bit rate range, a proof for the optimality of the Karhunen-Loève transform for Gaussian sources. Source Coding is suitable as a primary text for courses on this subject. It can also be used as a resource for teaching and as a comprehensive reference for professional engineers and academic researches.







Joint Source-Channel Coding


Book Description

Consolidating knowledge on Joint Source-Channel Coding (JSCC), this book provides an indispensable resource on a key area of performance enhancement for communications networks Presenting in one volume the key theories, concepts and important developments in the area of Joint Source-Channel Coding (JSCC), this book provides the fundamental material needed to enhance the performance of digital and wireless communication systems and networks. It comprehensively introduces JSCC technologies for communications systems, including coding and decoding algorithms, and emerging applications of JSCC in current wireless communications. The book covers the full range of theoretical and technical areas before concluding with a section considering recent applications and emerging designs for JSCC. A methodical reference for academic and industrial researchers, development engineers, system engineers, system architects and software engineers, this book: Explains how JSCC leads to high performance in communication systems and networks Consolidates key material from multiple disparate sources Is an ideal reference for graduate-level courses on digital or wireless communications, as well as courses on information theory Targets professionals involved with digital and wireless communications and networking systems




Network-aware Source Coding and Communication


Book Description

An introduction to the theory and techniques for achieving high quality network communication with the best possible bandwidth economy, this book focuses on network information flow with fidelity. Covering both lossless and lossy source reconstruction, it is illustrated throughout with real-world applications, including sensor networks and multimedia communications. Practical algorithms are presented, developing novel techniques for tackling design problems in joint network-source coding via collaborative multiple description coding, progressive coding, diversity routing and network coding. With systematic introductions to the basic theories of distributed source coding, network coding and multiple description coding, this is an ideal self-contained resource for researchers and students in information theory and network theory.