Distribution-Free Statistical Methods


Book Description

Basic concepts in distribution-free methods; One-sample location problems; Miscellaneous one-sample problems; Two-sample problems; Straight-line regression; Multiple regression and general linear models; Bivariate problems; Appendix; Bibliography.




Distribution-Free Statistical Methods, Second Edition


Book Description

Distribution-free statistical methods enable users to make statistical inferences with minimum assumptions about the population in question. They are widely used, especially in the areas of medical and psychological research. This new edition is aimed at senior undergraduate and graduate level. It also includes a discussion of new techniques that have arisen as a result of improvements in statistical computing. Interest in estimation techniques has particularly grown, and this section of the book has been expanded accordingly. Finally, Distribution-Free Statistical Methods includes more examples with actual data sets appearing in the text.




Statistical Methods


Book Description

This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters




Introductory Statistics 2e


Book Description

Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.




Statistical Methods in Water Resources


Book Description

Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.




Distribution-Free Statistical Methods


Book Description

Basic concepts in distribution-free methods; One-sample location problems; Miscellaneous one-sample problems; Two-sample problems; Straight-line regression; Multiple regression and general linear models; Bivariate problems; Appendix; Bibliography.




Statistical Methods


Book Description

Statistical Methods: An Introduction to Basic Statistical Concepts and Analysis, Second Edition is a textbook designed for students with no prior training in statistics. It provides a solid background of the core statistical concepts taught in most introductory statistics textbooks. Mathematical proofs are deemphasized in favor of careful explanations of statistical constructs. The text begins with coverage of descriptive statistics such as measures of central tendency and variability, then moves on to inferential statistics. Transitional chapters on z-scores, probability, and sampling distributions pave the way to understanding the logic of hypothesis testing and the inferential tests that follow. Hypothesis testing is taught through a four-step process. These same four steps are used throughout the text for the other statistical tests presented including t tests, one- and two-way ANOVAs, chi-square, and correlation. A chapter on nonparametric tests is also provided as an alternative when the requirements cannot be met for parametric tests. Because the same logical framework and sequential steps are used throughout the text, a consistency is provided that allows students to gradually master the concepts. Their learning is enhanced further with the inclusion of "thought questions" and practice problems integrated throughout the chapters. New to the second edition: Chapters on factorial analysis of variance and non-parametric techniques for all data Additional and updated chapter exercises for students to test and demonstrate their learning Full instructor resources: test bank questions, Powerpoint slides, and an Instructor Manual




Distribution-free Methods for Statistical Process Monitoring and Control


Book Description

This book explores nonparametric statistical process control. It provides an up-to-date overview of nonparametric Shewhart-type univariate control charts, and reviews the recent literature on nonparametric charts, particularly multivariate schemes. Further, it discusses observations tied to the monitored population quantile, focusing on the Shewhart Sign chart. The book also addresses the issue of practically assuming the normality and the independence when a process is statistically monitored, and examines in detail change-point analysis-based distribution-free control charts designed for Phase I applications. Moreover, it introduces six distribution-free EWMA schemes for simultaneously monitoring the location and scale parameters of a univariate continuous process, and establishes two nonparametric Shewhart-type control charts based on order statistics with signaling runs-type rules. Lastly, the book proposes novel and effective method for early disease detection.




Nonparametric Statistical Methods


Book Description

Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.




Hierarchical Modeling and Analysis for Spatial Data, Second Edition


Book Description

Keep Up to Date with the Evolving Landscape of Space and Space-Time Data Analysis and Modeling Since the publication of the first edition, the statistical landscape has substantially changed for analyzing space and space-time data. More than twice the size of its predecessor, Hierarchical Modeling and Analysis for Spatial Data, Second Edition reflects the major growth in spatial statistics as both a research area and an area of application. New to the Second Edition New chapter on spatial point patterns developed primarily from a modeling perspective New chapter on big data that shows how the predictive process handles reasonably large datasets New chapter on spatial and spatiotemporal gradient modeling that incorporates recent developments in spatial boundary analysis and wombling New chapter on the theoretical aspects of geostatistical (point-referenced) modeling Greatly expanded chapters on methods for multivariate and spatiotemporal modeling New special topics sections on data fusion/assimilation and spatial analysis for data on extremes Double the number of exercises Many more color figures integrated throughout the text Updated computational aspects, including the latest version of WinBUGS, the new flexible spBayes software, and assorted R packages The Only Comprehensive Treatment of the Theory, Methods, and Software This second edition continues to provide a complete treatment of the theory, methods, and application of hierarchical modeling for spatial and spatiotemporal data. It tackles current challenges in handling this type of data, with increased emphasis on observational data, big data, and the upsurge of associated software tools. The authors also explore important application domains, including environmental science, forestry, public health, and real estate.