Distribution Theory for Tests Based on the Sample Distribution Function


Book Description

Presents a coherent body of theory for the derivation of the sampling distributions of a wide range of test statistics. Emphasis is on the development of practical techniques. A unified treatment of the theory was attempted, e.g., the author sought to relate the derivations for tests on the circle and the two-sample problem to the basic theory for the one-sample problem on the line. The Markovian nature of the sample distribution function is stressed, as it accounts for the elegance of many of the results achieved, as well as the close relation with parts of the theory of stochastic processes.




NBS Special Publication


Book Description




Goodness-of-Fit Tests and Model Validity


Book Description

The 37 expository articles in this volume provide broad coverage of important topics relating to the theory, methods, and applications of goodness-of-fit tests and model validity. The book is divided into eight parts, each of which presents topics written by expert researchers in their areas. Key features include: * state-of-the-art exposition of modern model validity methods, graphical techniques, and computer-intensive methods * systematic presentation with sufficient history and coverage of the fundamentals of the subject * exposure to recent research and a variety of open problems * many interesting real life examples for practitioners * extensive bibliography, with special emphasis on recent literature * subject index This comprehensive reference work will serve the statistical and applied mathematics communities as well as practitioners in the field.







Change-point Problems


Book Description




Topics In Circular Statistics-vol 5


Book Description

This research monograph on circular data analysis covers some recent advances in the field, besides providing a brief introduction to, and a review of, existing methods and models. The primary focus is on recent research into topics such as change-point problems, predictive distributions, circular correlation and regression, etc. An important feature of this work is the S-plus subroutines provided for analyzing actual data sets. Coupled with the discussion of new theoretical research, the book should benefit both the researcher and the practitioner.







Algorithmic Learning Theory


Book Description

This book constitutes the refereed proceedings of the 19th International Conference on Algorithmic Learning Theory, ALT 2008, held in Budapest, Hungary, in October 2008, co-located with the 11th International Conference on Discovery Science, DS 2008. The 31 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from 46 submissions. The papers are dedicated to the theoretical foundations of machine learning; they address topics such as statistical learning; probability and stochastic processes; boosting and experts; active and query learning; and inductive inference.




Asymptotic Laws and Methods in Stochastics


Book Description

This book contains articles arising from a conference in honour of mathematician-statistician Miklόs Csörgő on the occasion of his 80th birthday, held in Ottawa in July 2012. It comprises research papers and overview articles, which provide a substantial glimpse of the history and state-of-the-art of the field of asymptotic methods in probability and statistics, written by leading experts. The volume consists of twenty articles on topics on limit theorems for self-normalized processes, planar processes, the central limit theorem and laws of large numbers, change-point problems, short and long range dependent time series, applied probability and stochastic processes, and the theory and methods of statistics. It also includes Csörgő’s list of publications during more than 50 years, since 1962.