Distributions in Stochastic Network Models


Book Description

This monograph presents important research results in the areas of queuing theory, risk theory, graph theory and reliability theory. The analysed stochastic network models are aggregated systems of elements in random environments. To construct and to analyse a large number of different stochastic network models it is possible by a proof of new analytical results and a construction of calculation algorithms besides of the application of cumbersome traditional techniques Such a constructive approach is in a prior detailed investigation of an algebraic model component and leads to an appearance of new original stochastic network models, algorithms and application to computer science and information technologies. Accuracy and asymptotic formulas, additional calculation algorithms have been constructed due to an introduction of control parameters into analysed models, a reduction of multi-dimensional problems to one dimensional problems, a comparative analysis, a graphic interpretation of network models, an investigation of new models characteristics, a choice of special distributions classes or principles of subsystems aggregation, proves of new statements.




Stochastic Networks


Book Description

A compact, highly-motivated introduction to some of the stochastic models found useful in the study of communications networks.




An Introduction to Stochastic Modeling


Book Description

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.




Network Design with Applications to Transportation and Logistics


Book Description

This book explores the methodological and application developments of network design in transportation and logistics. It identifies trends, challenges and research perspectives in network design for these areas. Network design is a major class of problems in operations research where network flow, combinatorial and mixed integer optimization meet. The analysis and planning of transportation and logistics systems continues to be one of the most important application areas of operations research. Networks provide the natural way of depicting such systems, so the optimal design and operation of networks is the main methodological area of operations research that is used for the analysis and planning of these systems. This book defines the current state of the art in the general area of network design, and then turns to its applications to transportation and logistics. New research challenges are addressed. Network Design with Applications to Transportation and Logistics is divided into three parts. Part I examines basic design problems including fixed-cost network design and parallel algorithms. After addressing the basics, Part II focuses on more advanced models. Chapters cover topics such as multi-facility network design, flow-constrained network design, and robust network design. Finally Part III is dedicated entirely to the potential application areas for network design. These areas range from rail networks, to city logistics, to energy transport. All of the chapters are written by leading researchers in the field, which should appeal to analysts and planners.




Introduction to Stochastic Networks


Book Description

Beginning with Jackson networks and ending with spatial queuing systems, this book describes several basic stochastic network processes, with the focus on network processes that have tractable expressions for the equilibrium probability distribution of the numbers of units at the stations. Intended for graduate students and researchers in engineering, science and mathematics interested in the basics of stochastic networks that have been developed over the last twenty years, the text assumes a graduate course in stochastic processes without measure theory, emphasising multi-dimensional Markov processes. Alongside self-contained material on point processes involving real analysis, the book also contains complete introductions to reversible Markov processes, Palm probabilities for stationary systems, Little laws for queuing systems and space-time Poisson processes.




Network Traffic Engineering


Book Description

A comprehensive guide to the concepts and applications of queuing theory and traffic theory Network Traffic Engineering: Models and Applications provides an advanced level queuing theory guide for students with a strong mathematical background who are interested in analytic modeling and performance assessment of communication networks. The text begins with the basics of queueing theory before moving on to more advanced levels. The topics covered in the book are derived from the most cutting-edge research, project development, teaching activity, and discussions on the subject. They include applications of queuing and traffic theory in: LTE networks Wi-Fi networks Ad-hoc networks Automated vehicles Congestion control on the Internet The distinguished author seeks to show how insight into practical and real-world problems can be gained by means of quantitative modeling. Perfect for graduate students of computer engineering, computer science, telecommunication engineering, and electrical engineering, Network Traffic Engineering offers a supremely practical approach to a rapidly developing field of study and industry.




Stochastic Distribution Control System Design


Book Description

A recent development in SDC-related problems is the establishment of intelligent SDC models and the intensive use of LMI-based convex optimization methods. Within this theoretical framework, control parameter determination can be designed and stability and robustness of closed-loop systems can be analyzed. This book describes the new framework of SDC system design and provides a comprehensive description of the modelling of controller design tools and their real-time implementation. It starts with a review of current research on SDC and moves on to some basic techniques for modelling and controller design of SDC systems. This is followed by a description of controller design for fixed-control-structure SDC systems, PDF control for general input- and output-represented systems, filtering designs, and fault detection and diagnosis (FDD) for SDC systems. Many new LMI techniques being developed for SDC systems are shown to have independent theoretical significance for robust control and FDD problems.




Stochastic Analysis of Biochemical Systems


Book Description

This book focuses on counting processes and continuous-time Markov chains motivated by examples and applications drawn from chemical networks in systems biology. The book should serve well as a supplement for courses in probability and stochastic processes. While the material is presented in a manner most suitable for students who have studied stochastic processes up to and including martingales in continuous time, much of the necessary background material is summarized in the Appendix. Students and Researchers with a solid understanding of calculus, differential equations and elementary probability and who are well-motivated by the applications will find this book of interest. David F. Anderson is Associate Professor in the Department of Mathematics at the University of Wisconsin and Thomas G. Kurtz is Emeritus Professor in the Departments of Mathematics and Statistics at that university. Their research is focused on probability and stochastic processes with applications in biology and other areas of science and technology. These notes are based in part on lectures given by Professor Anderson at the University of Wisconsin – Madison and by Professor Kurtz at Goethe University Frankfurt.




The Oxford Handbook of Political Networks


Book Description

Politics is intuitively about relationships, but until recently the network perspective has not been a dominant part of the methodological paradigm that political scientists use to study politics. This volume is a foundational statement about networks in the study of politics.




Markov Processes for Stochastic Modeling


Book Description

Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.