Diversity of Functional Traits and Interactions


Book Description

This book presents new theoretical perspectives on ecological community dynamics and in so doing casts fresh light on the enduring complexity–stability debate. Real ecological communities do not simply comprise diverse species and interactions, which respectively represented the nodes and links of the classic network theory. Rather, they are characterized by different types of complexity, and this book explains how this diversity of complexity is key to understanding the dynamics of ecological communities. It is shown how various properties in natural communities, such as life history, adaptation, density dependence, sex, interaction types, space, functional traits, and microbial processes, can dramatically increase the complexity in ecological communities. Furthermore, innovative methods are introduced that may be applied to cast light on very complex communities. With each chapter presenting the latest advances and approaches, the book sets the direction for future research on ecological community dynamics. It will be a “must read” for researchers and students in the field of ecology.




Plant Functional Diversity


Book Description

Biological diversity, the variety of living organisms on Earth, is traditionally viewed as the diversity of taxa, and species in particular. However, other facets of diversity also need to be considered for a comprehensive understanding of evolutionary and ecological processes. This novel book demonstrates the advantages of adopting a functional approach to diversity in order to improve our understanding of the functioning of ecological systems and theircomponents. The focus is on plants, which are major components of these systems, and for which the functional approach has led to major scientific advances over the last 20 years. PlantFunctional Diversity presents the rationale for a trait-based approach to functional diversity in the context of comparative plant ecology and agroecology. It demonstrates how this approach can be used to address a number of highly debated questions in plant ecology pertaining to plant responses to their environment, controls on plant community structure, ecosystem properties, and the services these deliver to human societies. This research level text will be of particular relevance and use tograduate students and professional researchers in plant ecology, agricultural sciences and conservation biology.




Handbook of Trait-Based Ecology


Book Description

Trait-based ecology is rapidly expanding. This comprehensive and accessible guide covers the main concepts and tools in functional ecology.




Aquatic Functional Biodiversity


Book Description

Aquatic Functional Biodiversity: An Ecological and Evolutionary Perspective provides a general conceptual framework by some of the most prominent investigators in the field for how to link eco-evolutionary approaches with functional diversity to understand and conserve the provisioning of ecosystem services in aquatic systems. Rather than producing another methodological book, the editors and authors primarily concentrate on defining common grounds, connecting conceptual frameworks and providing examples by a more detailed discussion of a few empirical studies and projects, which illustrate key ideas and an outline of potential future directions and challenges that are expected in this interdisciplinary research field. Recent years have seen an explosion of interest in using network approaches to disentangle the relationship between biodiversity, community structure and functioning. Novel methods for model construction are being developed constantly, and modern methods allow for the inclusion of almost any type of explanatory variable that can be correlated either with biodiversity or ecosystem functioning. As a result these models have been widely used in ecology, conservation and eco-evolutionary biology. Nevertheless, there remains a considerable gap on how well these approaches are feasible to understand the mechanisms on how biodiversity constrains the provisioning of ecosystem services. - Defines common theoretical grounds in terms of terminology and conceptual issues - Connects theory and practice in ecology and eco-evolutionary sciences - Provides examples for successful biodiversity conservation and ecosystem service management




Why Birds Matter


Book Description

For over one hundred years, ornithologists and amateur birders have jointly campaigned for the conservation of bird species, documenting not only birds’ beauty and extraordinary diversity, but also their importance to ecosystems worldwide. But while these avian enthusiasts have noted that birds eat fruit, carrion, and pests; spread seed and fertilizer; and pollinate plants, among other services, they have rarely asked what birds are worth in economic terms. In Why Birds Matter, an international collection of ornithologists, botanists, ecologists, conservation biologists, and environmental economists seeks to quantify avian ecosystem services—the myriad benefits that birds provide to humans. The first book to approach ecosystem services from an ornithological perspective, Why Birds Matter asks what economic value we can ascribe to those services, if any, and how this value should inform conservation. Chapters explore the role of birds in such important ecological dynamics as scavenging, nutrient cycling, food chains, and plant-animal interactions—all seen through the lens of human well-being—to show that quantifying avian ecosystem services is crucial when formulating contemporary conservation strategies. Both elucidating challenges and providing examples of specific ecosystem valuations and guidance for calculation, the contributors propose that in order to advance avian conservation, we need to appeal not only to hearts and minds, but also to wallets.




Functional and Phylogenetic Ecology in R


Book Description

Functional and Phylogenetic Ecology in R is designed to teach readers to use R for phylogenetic and functional trait analyses. Over the past decade, a dizzying array of tools and methods were generated to incorporate phylogenetic and functional information into traditional ecological analyses. Increasingly these tools are implemented in R, thus greatly expanding their impact. Researchers getting started in R can use this volume as a step-by-step entryway into phylogenetic and functional analyses for ecology in R. More advanced users will be able to use this volume as a quick reference to understand particular analyses. The volume begins with an introduction to the R environment and handling relevant data in R. Chapters then cover phylogenetic and functional metrics of biodiversity; null modeling and randomizations for phylogenetic and functional trait analyses; integrating phylogenetic and functional trait information; and interfacing the R environment with a popular C-based program. This book presents a unique approach through its focus on ecological analyses and not macroevolutionary analyses. The author provides his own code, so that the reader is guided through the computational steps to calculate the desired metrics. This guided approach simplifies the work of determining which package to use for any given analysis. Example datasets are shared to help readers practice, and readers can then quickly turn to their own datasets.




Root Ecology


Book Description

In the course of evolution, a great variety of root systems have learned to overcome the many physical, biochemical and biological problems brought about by soil. This development has made them a fascinating object of scientific study. This volume gives an overview of how roots have adapted to the soil environment and which roles they play in the soil ecosystem. The text describes the form and function of roots, their temporal and spatial distribution, and their turnover rate in various ecosystems. Subsequently, a physiological background is provided for basic functions, such as carbon acquisition, water and solute movement, and for their responses to three major abiotic stresses, i.e. hard soil structure, drought and flooding. The volume concludes with the interactions of roots with other organisms of the complex soil ecosystem, including symbiosis, competition, and the function of roots as a food source.




Encyclopedia of Biodiversity


Book Description

The 7-volume Encyclopedia of Biodiversity, Second Edition maintains the reputation of the highly regarded original, presenting the most current information available in this globally crucial area of research and study. It brings together the dimensions of biodiversity and examines both the services it provides and the measures to protect it. Major themes of the work include the evolution of biodiversity, systems for classifying and defining biodiversity, ecological patterns and theories of biodiversity, and an assessment of contemporary patterns and trends in biodiversity. The science of biodiversity has become the science of our future. It is an interdisciplinary field spanning areas of both physical and life sciences. Our awareness of the loss of biodiversity has brought a long overdue appreciation of the magnitude of this loss and a determination to develop the tools to protect our future. Second edition includes over 100 new articles and 226 updated articles covering this multidisciplinary field— from evolution to habits to economics, in 7 volumes The editors of this edition are all well respected, instantly recognizable academics operating at the top of their respective fields in biodiversity research; readers can be assured that they are reading material that has been meticulously checked and reviewed by experts Approximately 1,800 figures and 350 tables complement the text, and more than 3,000 glossary entries explain key terms




Size- and Age-Related Changes in Tree Structure and Function


Book Description

Millions of trees live and grow all around us, and we all recognize the vital role they play in the world’s ecosystems. Publicity campaigns exhort us to plant yet more. Yet until recently comparatively little was known about the root causes of the physical changes that attend their growth. Since trees typically increase in size by three to four orders of magnitude in their journey to maturity, this gap in our knowledge has been a crucial issue to address. Here at last is a synthesis of the current state of our knowledge about both the causes and consequences of ontogenetic changes in key features of tree structure and function. During their ontogeny, trees undergo numerous changes in their physiological function, the structure and mechanical properties of their wood, and overall architecture and allometry. This book examines the central interplay between these changes and tree size and age. It also explores the impact these changes can have, at the level of the individual tree, on the emerging characteristics of forest ecosystems at various stages of their development. The analysis offers an explanation for the importance of discriminating between the varied physical properties arising from the nexus of size and age, as well as highlighting the implications these ontogenetic changes have for commercial forestry and climate change. This important and timely summation of our knowledge base in this area, written by highly respected researchers, will be of huge interest, not only to researchers, but also to forest managers and silviculturists.




A Mechanistic Approach to Plankton Ecology


Book Description

The three main missions of any organism--growing, reproducing, and surviving--depend on encounters with food and mates, and on avoiding encounters with predators. Through natural selection, the behavior and ecology of plankton organisms have evolved to optimize these tasks. This book offers a mechanistic approach to the study of ocean ecology by exploring biological interactions in plankton at the individual level. The book focuses on encounter mechanisms, since the pace of life in the ocean intimately relates to the rate at which encounters happen. Thomas Kiørboe examines the life and interactions of plankton organisms with the larger aim of understanding marine pelagic food webs. He looks at plankton ecology and behavior in the context of the organisms' immediate physical and chemical habitats. He shows that the nutrient uptake, feeding rates, motility patterns, signal transmissions, and perception of plankton are all constrained by nonintuitive interactions between organism biology and small-scale physical and chemical characteristics of the three-dimensional fluid environment. Most of the book's chapters consist of a theoretical introduction followed by examples of how the theory might be applied to real-world problems. In the final chapters, mechanistic insights of individual-level processes help to describe broader population dynamics and pelagic food web structure and function.