DNA Replication, Recombination, and Repair


Book Description

This book is a comprehensive review of the detailed molecular mechanisms of and functional crosstalk among the replication, recombination, and repair of DNA (collectively called the "3Rs") and the related processes, with special consciousness of their biological and clinical consequences. The 3Rs are fundamental molecular mechanisms for organisms to maintain and sometimes intentionally alter genetic information. DNA replication, recombination, and repair, individually, have been important subjects of molecular biology since its emergence, but we have recently become aware that the 3Rs are actually much more intimately related to one another than we used to realize. Furthermore, the 3R research fields have been growing even more interdisciplinary, with better understanding of molecular mechanisms underlying other important processes, such as chromosome structures and functions, cell cycle and checkpoints, transcriptional and epigenetic regulation, and so on. This book comprises 7 parts and 21 chapters: Part 1 (Chapters 1–3), DNA Replication; Part 2 (Chapters 4–6), DNA Recombination; Part 3 (Chapters 7–9), DNA Repair; Part 4 (Chapters 10–13), Genome Instability and Mutagenesis; Part 5 (Chapters 14–15), Chromosome Dynamics and Functions; Part 6 (Chapters 16–18), Cell Cycle and Checkpoints; Part 7 (Chapters 19–21), Interplay with Transcription and Epigenetic Regulation. This volume should attract the great interest of graduate students, postdoctoral fellows, and senior scientists in broad research fields of basic molecular biology, not only the core 3Rs, but also the various related fields (chromosome, cell cycle, transcription, epigenetics, and similar areas). Additionally, researchers in neurological sciences, developmental biology, immunology, evolutionary biology, and many other fields will find this book valuable.




Human Adult Stem Cells


Book Description

The aim of volume 7 of Human Cell Culture is to provide clear and precise methods for growing primary cultures of adult stem cells from various human tissues and describe culture conditions in which these adult stem cells differentiate along their respective lineages. The book will be of value to biomedical scientists and of special interest to stem cell biologists and tissue engineers. Each chapter is written by experts actively involved in growing human adult stem cells.




DNA Damage and Repair in Human Tissues


Book Description

Physical and chemical agents in the environment damage the DNA of humans, and pose a major threat to human health today, and to the genetic integrity of human populations. Although studies on isolated DNA in vitro, on prokaryotes, on mammalian cells in culture, and on laboratory animals have provided essential background information, it is now possible to study DNA damage and repair in human tissues directly. New techniques of high sensitivity, especially those not requiring radioactive labeling have made possible quantitation of DNA damage and repair, as well as detection of residual, unrepaired DNA lesions . In recent years, several investigators have taken up the challenge of studying damage and repair responses in humans, and we have chosen that work as the special focus of this Symposium. Major advances in under standing damage and responses in human skin, in blood cells and in human internal organs indicate three major themes. First, DNA damage levels in human tissues depend not only on the initial exposures, but also on the capapacity of that tissue for repair of the specific lesion type. Second, repair in human tissues may differ quantitatively and qualitatively from that in human cells in culture.




DNA Damage, DNA Repair and Disease


Book Description

The DNA of all organisms is constantly being damaged by endogenous and exogenous sources. Oxygen metabolism generates reactive species that can damage DNA, proteins and other organic compounds in living cells. Exogenous sources include ionizing and ultraviolet radiations, carcinogenic compounds and environmental toxins among others. The discovery of multiple DNA lesions and DNA repair mechanisms showed the involvement of DNA damage and DNA repair in the pathogenesis of many human diseases, most notably cancer. These books provide a comprehensive overview of the interdisciplinary area of DNA damage and DNA repair, and their relevance to disease pathology. Edited by recognised leaders in the field, this two-volume set is an appealing resource to a variety of readers including chemists, chemical biologists, geneticists, cancer researchers and drug discovery scientists.




DNA Damage Recognition


Book Description

Stands as the most comprehensive guide to the subject-covering every essential topic related to DNA damage identification and repair. Covering a wide array of topics from bacteria to human cells, this book summarizes recent developments in DNA damage repair and recognition while providing timely reviews on the molecular mechanisms employe




DNA Damage and Repair


Book Description

The First International Congress on DNA Damage and Repair was held in Rome, Italy, July 12-17, 1987. It was organized by the Italian Com mission for Nuclear Alternative Energy Sources. The subject of DNA damage and repair involves almost all the fields ofbidogical sciences. Some of the more prominent ones include carcino genesis, photobiology, radiation biology, aging, enzymology, genetics, and molecular biology. These individual fields have their own interna tional meetings and although the meetings often have sessions devoted to DNA repair, they do not bring together a wide diversity of international workers in the field to exchange ideas. The purpose of the Congress was to facilitate such an exchange among scientists representing many fields of endeavor and many countries. The 37 manuscripts in this volume, presented by the invited spea kers during the four and half days of the Congress, encompass the field of DNA damage and repair. They cover biological systems ranging from mo lecules to humans and deal with damages and repair after treatment of cells with various types of radiations, chemicals, and exogenous and en dogenous oxidative damages. The Congress and its Proceedings are dedicated to two international leaders in the field of DNA damage and repair, Alexander Hollaender of the United States and Adriano Buzzati Traverso of Italy. Hollaender, who died in December 1986, was one of the first investigators to recognize the damage to DNA was important in cell killing and mutagenesis. His early work indicated that cells could recover from radiation injury.




Muse Cells


Book Description

This book provides the first comprehensive account of multilineage-differentiating stress-enduring (Muse) cells, a pluripotent and non-tumorigenic subpopulation of mesenchymal stem cells (MSCs) that have the ability to detect damage signals, migrate to damaged sites, and spontaneously differentiate into cells compatible with the affected tissue, thereby enabling repair of all tissue types. The coverage encompasses everything from the basic properties of Muse cells to their tissue repair effects and potential clinical applications—for example, in acute myocardial infarction, stroke, skin injuries and ulcers, renal failure, and liver disease. An important technical chapter provides a practical and precise protocol for the isolation of Muse cells, which will enable readers to use Muse cells in their own research. In offering fascinating insights into the strategic organization of the body’s reparative function and explaining how full utilization of Muse cells may significantly enhance the effectiveness of MSC treatment, the book will be of high value for Ph.D. students, postdocs, basic researchers, clinical doctors, and industrial developers.