Document Processing Using Machine Learning


Book Description

Document Processing Using Machine Learning aims at presenting a handful of resources for students and researchers working in the document image analysis (DIA) domain using machine learning since it covers multiple document processing problems. Starting with an explanation of how Artificial Intelligence (AI) plays an important role in this domain, the book further discusses how different machine learning algorithms can be applied for classification/recognition and clustering problems regardless the type of input data: images or text. In brief, the book offers comprehensive coverage of the most essential topics, including: · The role of AI for document image analysis · Optical character recognition · Machine learning algorithms for document analysis · Extreme learning machines and their applications · Mathematical foundation for Web text document analysis · Social media data analysis · Modalities for document dataset generation This book serves both undergraduate and graduate scholars in Computer Science/Information Technology/Electrical and Computer Engineering. Further, it is a great fit for early career research scientists and industrialists in the domain.




Machine Learning in Document Analysis and Recognition


Book Description

The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphical components of a document and to extract information. This book is a collection of research papers and state-of-the-art reviews by leading researchers all over the world. It includes pointers to challenges and opportunities for future research directions. The main goal of the book is to identify good practices for the use of learning strategies in DAR.




Automatic Digital Document Processing and Management


Book Description

This text reviews the issues involved in handling and processing digital documents. Examining the full range of a document’s lifetime, the book covers acquisition, representation, security, pre-processing, layout analysis, understanding, analysis of single components, information extraction, filing, indexing and retrieval. Features: provides a list of acronyms and a glossary of technical terms; contains appendices covering key concepts in machine learning, and providing a case study on building an intelligent system for digital document and library management; discusses issues of security, and legal aspects of digital documents; examines core issues of document image analysis, and image processing techniques of particular relevance to digitized documents; reviews the resources available for natural language processing, in addition to techniques of linguistic analysis for content handling; investigates methods for extracting and retrieving data/information from a document.




Document Image Analysis


Book Description

Interest in the automatic processing and analysis of document images has been rapidly increasing during the past few years. This book addresses the different subfields of document image analysis, including preprocessing and segmentation, form processing, handwriting recognition, line drawing and map processing, and contextual processing.




Deep Learning for Coders with fastai and PyTorch


Book Description

Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala




Human-in-the-Loop Machine Learning


Book Description

Machine learning applications perform better with human feedback. Keeping the right people in the loop improves the accuracy of models, reduces errors in data, lowers costs, and helps you ship models faster. Human-in-the-loop machine learning lays out methods for humans and machines to work together effectively. You'll find best practices on selecting sample data for human feedback, quality control for human annotations, and designing annotation interfaces. You'll learn to dreate training data for labeling, object detection, and semantic segmentation, sequence labeling, and more. The book starts with the basics and progresses to advanced techniques like transfer learning and self-supervision within annotation workflows.




Machine Learning and Deep Learning in Real-Time Applications


Book Description

Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.




Modeling, Learning, and Processing of Text-Technological Data Structures


Book Description

Researchers in many disciplines have been concerned with modeling textual data in order to account for texts as the primary information unit of written communication. The book “Modelling, Learning and Processing of Text-Technological Data Structures” deals with this challenging information unit. It focuses on theoretical foundations of representing natural language texts as well as on concrete operations of automatic text processing. Following this integrated approach, the present volume includes contributions to a wide range of topics in the context of processing of textual data. This relates to the learning of ontologies from natural language texts, the annotation and automatic parsing of texts as well as the detection and tracking of topics in texts and hypertexts. In this way, the book brings together a wide range of approaches to procedural aspects of text technology as an emerging scientific discipline.




Intelligent Algorithms in Software Engineering


Book Description

This book gathers the refereed proceedings of the Intelligent Algorithms in Software Engineering Section of the 9th Computer Science On-line Conference 2020 (CSOC 2020), held on-line in April 2020. Software engineering research and its applications to intelligent algorithms have now assumed an essential role in computer science research. In this book, modern research methods, together with applications of machine and statistical learning in software engineering research, are presented.




Pattern Recognition


Book Description

This book constitutes the proceedings of the 12th Mexican Conference on Pattern Recognition, MCPR 2020, which was due to be held in Morelia, Mexico, in June 2020. The conference was held virtually due to the COVID-19 pandemic. The 31 papers presented in this volume were carefully reviewed and selected from 67 submissions. They were organized in the following topical sections: pattern recognition techniques; image processing and analysis; computer vision; industrial and medical applications of pattern recognition; natural language processing and recognition; artificial intelligence techniques and recognition.