Domestic Wastewater Treatment in Developing Countries


Book Description

Affordable and effective domestic wastewater treatment is a critical issue in public health and disease prevention around the world, particularly so in developing countries which often lack the financial and technical resources necessary for proper treatment facilities. This practical guide provides state-of-the-art coverage of methods for domestic wastewater treatment and provides a foundation to the practical design of wastewater treatment and re-use systems. The emphasis is on low-cost, low-energy, low-maintenance, high-performance 'natural' systems that contribute to environmental sustainability by producing effluents that can be safely and profitably used in agriculture for crop irrigation and/or in aquaculture, for fish and aquatic vegetable pond fertilization. Modern design methodologies, with worked design examples, are described for waste stabilization ponds, wastewater storage and treatment reservoirs; constructed wetlands, upflow anaerobic sludge blanket reactors, biofilters, aerated lagoons and oxidation ditches. This book is essential reading for engineers, academics and upper-level and graduate students in engineering, wastewater management and public health, and others interested in sustainable and cost-effective technologies for reducing wastewater-related diseases and environmental damage.




Industrial Wastewater Treatment, Recycling and Reuse


Book Description

Industrial Wastewater Treatment, Recycling and Reuse is an accessible reference to assist you when handling wastewater treatment and recycling. It features an instructive compilation of methodologies, including advanced physico-chemical methods and biological methods of treatment. It focuses on recent industry practices and preferences, along with newer methodologies for energy generation through waste. The book is based on a workshop run by the Indus MAGIC program of CSIR, India. It covers advanced processes in industrial wastewater treatment, applications, and feasibility analysis, and explores the process intensification approach as well as implications for industrial applications. Techno-economic feasibility evaluation is addressed, along with a comparison of different approaches illustrated by specific case studies. Industrial Wastewater Treatment, Recycling and Reuse introduces you to the subject with specific reference to problems currently being experienced in different industry sectors, including the petroleum industry, the fine chemical industry, and the specialty chemicals manufacturing sector. - Provides practical solutions for the treatment and recycling of industrial wastewater via case studies - Instructive articles from expert authors give a concise overview of different physico-chemical and biological methods of treatment, cost-to-benefit analysis, and process comparison - Supplies you with the relevant information to make quick process decisions




Efficient Management of Wastewater


Book Description

Water reuse management is one of the challenges all water scarce countries have to deal with in the coming decades. The present book highlights non-conventional solutions within the field of wastewater treatment and reuse predominantly for professionals and decision makers. It focuses on technologies which are reliable, sustainable, low cost and suitable for rural and sub urban areas. In addition, particularly innovative on-site concepts are presented.




Treatise on Water Science


Book Description

Treatise on Water Science, Four-Volume Set Available online and in print for a limited time Water quality and management are of great significance globally, as the demand for clean, potable water far exceeds the availability. Water science research brings together the natural and applied sciences, engineering, chemistry, law and policy, and economics. The Treatise on Water Science seeks to unite these areas through contributions from a global team of author-experts. The work examines topics in depth, with an emphasis on innovative research and technologies for those working in applied areas. Development partnership with and endorsement from the International Water Association (IWA) demonstrates the authority of the content. Editor-in-Chief: Peter Wilderer, a Stockholm Water Prize recipient, has assembled a world-class team of contributors, ensuring market reach across all related sciences and a global approach to the subject. Topics related to resource management, water quality and supply, and handling of wastewater are treated in depth with up to 30 pages of coverage per topic, relative to a handful of pages per topic in comparable reference works. To buy from Elsevier, visit: http://store.elsevier.com/product.jsp?isbn=9780444531933&dmnum=CWS1 Co-Published with Elsevier




Treatment Wetlands


Book Description

Contents: Overview of Treatment Wetlands; Fundamentals of Treatment Wetlands; Horizontal Flow Wetlands; Vertical Flow Wetlands; French Vertical Flow Wetlands; Intensified and Modified Wetlands; Free Water Surface Wetlands; Other Applications; Additional Aspects.




Wastewater Primer


Book Description




Treatment Wetlands for Environmental Pollution Control


Book Description

The aim of this book is to present an overview of the state of the art with regard to the function, application and design of TWSs in order to better protect surface water from contamination. Accordingly, it also presents applications of constructed wetlands with regard to climatic and cultural aspects. The use of artificial and natural treatment wetland systems (TWSs) for wastewater treatment is an approach that has been developed over the last thirty years. Europe is currently home to roughly 10,000 constructed wetland treatment systems (CWTSs), which simulate the aquatic habitat conditions of natural marsh ecosystems; roughly 3,500 systems are in operation in Germany alone. TWSs can also be found in many other European countries, for example 200 – 400 in Denmark, 400 – 600 in Great Britain, and ca. 1,000 in Poland. Most of the existing systems serve as local or individual household treatment systems. CWTSs are easy to operate and do not require specialized maintenance; further, no biological sewage sludge is formed during treatment processes. As TWSs are resistant to fluctuations in hydraulic loads, they are primarily used in rural areas as well as in urbanized areas with dispersed habitats, where conventional sewer systems and central conventional wastewater treatment plants (WWTPs) cannot be applied due to the high costs they would entail. TWSs are usually applied at the 2nd stage of domestic wastewater treatment, after mechanical treatment, and/or at the 3rd stage of treatment in order to ensure purification of effluent from conventional biological reactors and re-naturalization. New applications of TWSs include rainwater treatment as well as industrial and landfill leachate treatment. TWSs are well suited to these fields, as they can potentially remove not only organic matter and nitrogen compounds but also trace metals and traces of persistent organic pollutants and pathogens. Based on the practical experience gathered to date, and on new research regarding the processes and mechanisms of pollutant removal and advances in the systems properties and design, TWSs continue to evolve.




Onsite Wastewater Treatment Systems Manual


Book Description

"This manual contains overview information on treatment technologies, installation practices, and past performance."--Introduction.




Source Separation and Decentralization for Wastewater Management


Book Description

Is sewer-based wastewater treatment really the optimal technical solution in urban water management? This paradigm is increasingly being questioned. Growing water scarcity and the insight that water will be an important limiting factor for the quality of urban life are main drivers for new approaches in wastewater management. Source Separation and Decentralization for Wastewater Management sets up a comprehensive view of the resources involved in urban water management. It explores the potential of source separation and decentralization to provide viable alternatives to sewer-based urban water management. During the 1990s, several research groups started working on source-separating technologies for wastewater treatment. Source separation was not new, but had only been propagated as a cheap and environmentally friendly technology for the poor. The novelty was the discussion whether source separation could be a sustainable alternative to existing end-of-pipe systems, even in urban areas and industrialized countries. Since then, sustainable resource management and many different source-separating technologies have been investigated. The theoretical framework and also possible technologies have now developed to a more mature state. At the same time, many interesting technologies to process combined or concentrated wastewaters have evolved, which are equally suited for the treatment of source-separated domestic wastewater. The book presents a comprehensive view of the state of the art of source separation and decentralization. It discusses the technical possibilities and practical experience with source separation in different countries around the world. The area is in rapid development, but many of the fundamental insights presented in this book will stay valid. Source Separation and Decentralization for Wastewater Management is intended for all professionals and researchers interested in wastewater management, whether or not they are familiar with source separation. Editors: Tove A. Larsen, Kai M. Udert and Judit Lienert, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Switzerland. Contributors: Yuval Alfiya, Technion - Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Prof. Dr. M. Bruce Beck, University of Georgia, Warnell School of Forestry and Natural Resources; Dr. Christian Binz, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Markus Boller, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Prof. Dr. Eran Friedler, Technion – Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Zenah Bradford-Hartke, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Shelley Brown-Malker, Very Small Particle Company Ltd; Bert Bundervoet, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. David Butler, University of Exeter, Centre for Water Systems; Dr. Christopher A. Buzie, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Dana Cordell, University of Technology, Sydney (UTS), Institute for Sustainable Futures (ISF); Dr. Vasileios Diamantis, Democritus University of Thrace, Department of Environmental Engineering; Prof. Dr. Jan Willem Erisman, Louis Bolk Institute; VU University Amsterdam, Department of Earth Sciences; Barbara Evans, University of Leeds, School of Civil Engineering; Prof. Dr. Malin Falkenmark, Stockholm International Water Institute; Dr. Ted Gardner, Central Queensland University, Institute for Resource Industries and Sustainability; Dr. Heiko Gebauer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Willi Gujer, Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering (BAUG); Prof. Dr. Bruce Jefferson, Cranfield University, Cranfield Water Science Institute; Prof. Dr. Paul Jeffrey, Cranfield University, Cranfield Water Science Institute; Sarina Jenni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Håkan Jönsson, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Ïsik Kabdasli, Ïstanbul Technical University, Civil Engineering Faculty; Prof. Dr. Jörg Keller, The University of Queensland, Advanced Water Management Centre (AWMC); Prof. Dr. Klaus Kömmerer, Leuphana Universität Lüneburg, Institute of Sustainable and Environmental Chemistry; Dr. Katarzyna Kujawa-Roeleveld, Wageningen University, Agrotechnology and Food Sciences Group; Dr. Tove A. Larsen, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Michele Laureni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Gregory Leslie, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Harold Leverenz, University of California at Davis, Department of Civil and Environmental Engineering; Dr. Judit Lienert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Social Sciences (ESS); Prof. Dr. Jürg Londong, Bauhaus-Universität Weimar, Department of Urban Water Management and Sanitation; Dr. Christoph Lüthi, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Water and Sanitation in Developing Countries (Sandec); Prof. Dr. Max Maurer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering; Prof. em. Dr. Gustaf Olsson, Lund University, Department of Measurement Technology and Industrial Electrical Engineering (MIE); Prof. Dr. Ralf Otterpohl, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Bert Palsma, STOWA, Dutch Foundation for Applied Water Research; Dr. Arne R. Panesar, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH; Prof. Dr. Bruce E. Rittmann, Arizona State University, Swette Center for Environmental Biotechnology; Prof. Dr. Hansruedi Siegrist, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Dr. Ashok Sharma, Commonwealth Scientific and Industrial Research Organisation, Australia, Land and Water Division; Prof. Dr. Thor Axel Stenström, Stockholm Environment Institute, Bioresources Group; Norwegian University of Life Sciences, Department of Mathematical Science and Technology; Dr. Eckhard Störmer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Bjartur Swart, STOWA, Dutch Foundation for Applied Water Research; MWH North Europe; Prof. em. Dr. George Tchobanoglous, University of California at Davis, Department of Civil and Environmental Engineering; Elizabeth Tilley, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec); Swiss Federal Institute of Technology Zürich (ETHZ), Centre for Development and Cooperation (NADEL); Prof. Dr. Bernhard Truffer, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Innovation Research in Utility Sectors (Cirus); Prof. Dr. Olcay Tünay, Ïstanbul Technical University, Civil Engineering Faculty; Dr. Kai M. Udert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. em. Dr. Willy Verstraete, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. Björn Vinnerås, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T); Ecole Polytechnique Fédérale de Lausanne (EPFL),School of Architecture, Civil and Environmental Engineering (ENAC); Prof. em. Dr. Peter A. Wilderer, Technische Universität München, Institute for Advanced Study; Prof. Dr. Jun Xia, Chinese Academy of Sciences (CAS), Center for Water Resources Research and Key Laboratory of Water Cycle and Related Surface Processes; Prof. Dr. Grietje Zeeman, Wageningen University, Agrotechnology and Food Sciences Group




Water Conservation, Reuse, and Recycling


Book Description

In December 2002, a group of specialists on water resources from the United States and Iran met in Tunis, Tunisia, for an interacademy workshop on water resources management, conservation, and recycling. This was the fourth interacademy workshop on a variety of topics held in 2002, the first year of such workshops. Tunis was selected as the location for the workshop because the Tunisian experience in addressing water conservation issues was of interest to the participants from both the United States and Iran. This report includes the agenda for the workshop, all of the papers that were presented, and the list of site visits.