Doping and Density of States Engineering for Organic Thermoelectrics


Book Description

Thermoelectric materials can turn temperature differences directly into electricity. To use this to harvest e.g. waste heat with an efficiency that approaches the Carnot efficiency requires a figure of merit ZT larger than 1. Compared with their inorganic counterparts, organic thermoelectrics (OTE) have numerous advantages, such as low cost, large-area compatibility, flexibility, material abundance and an inherently low thermal conductivity. Therefore, organic thermoelectrics are considered by many to be a promising candidate material system to be used in lower cost and higher efficiency thermoelectric energy conversion, despite record ZT values for OTE currently lying around 0.25. A complete organic thermoelectric generator (TEG) normally needs both p-type and n-type materials to form its electric circuit. Molecular doping is an effective way to achieve p- and ntype materials using different dopants, and it is necessary to fundamentally understand the doping mechanism. We developed a simple yet quantitative analytical model and compare it with numerical kinetic Monte Carlo simulations to reveal the nature of the doping effect. The results show the formation of a deep tail in the Gaussian density of states (DOS) resulting from the Coulomb potentials of ionized dopants. It is this deep trap tail that negatively influences the charge carrier mobility with increasing doping concentration. The trends in mobilities and conductivities observed from experiments are in good agreement with the modeling results, for a large range of materials and doping concentrations. Having a high power factor PF is necessary for efficient TEG. We demonstrate that the doping method can heavily impact the thermoelectric properties of OTE. In comparison to conventional bulk doping, sequential doping can achieve higher conductivity by preserving the morphology, such that the power factor can improve over 100 times. To achieve TEG with high output power, not only a high PF is needed, but also having a significant active layer thickness is very important. We demonstrate a simple way to fabricate multi-layer devices by sequential doping without significantly sacrificing PF. In addition to the application discussed above, harvesting large amounts of heat at maximum efficiency, organic thermoelectrics may also find use in low-power applications like autonomous sensors where voltage is more important than power. A large output voltage requires a high Seebeck coefficient. We demonstrate that density of states (DOS) engineering is an effective tool to increase the Seebeck coefficient by tailoring the positions of the Fermi energy and the transport energy in n- and p-type doped blends of conjugated polymers and small molecules. In general, morphology heavily impacts the performance of organic electronic devices based on mixtures of two (or more) materials, and organic thermoelectrics are no exception. We experimentally find that the charge and energy transport is distinctly different in well-mixed and phase separated morphologies, which we interpreted in terms of a variable range hopping model. The experimentally observed trends in conductivity and Seebeck coefficient are reproduced by kinetic Monte Carlo simulations in which the morphology is accounted for.




Organic Thermoelectric Materials


Book Description

This book summarises the significant progress made in organic thermoelectric materials, focusing on effective routes to minimize thermal conductivity and maximize power factor.




Organic Thermoelectrics


Book Description

Organic Thermoelectrics Enables readers to understand the development and applications of organic thermoelectric conversion, including fundamentals and experimental breakthroughs Organic Thermoelectrics: From Materials to Devices introduces organic thermoelectric materials to devices in a systematic manner, covering the development of organic thermoelectric materials, followed by a discussion on the fundamental mechanism of thermoelectric conversion, design strategy, and advances in different materials, device fabrication, and characterizations of thermoelectric parameters. In Organic Thermoelectrics: From Materials to Devices, readers can expect to find detailed information on: Fundamentals of thermoelectric (TE) conversion, development of organic thermoelectric (OTE) fields and mechanisms, and basic physical processes in carrier transport and thermal transport for TE conversion Recent development and key strategies to develop p-type, n-type, and composite/hybrid OTE materials Basic mechanisms, fundamental requirements, and recent advances of doping for OTE applications, plus geometries and construction methods of OTE devices Theoretical and experimental advances in single molecular TE devices, together with the recent development in related detection methods Powered by worldwide innovative research results in the past ten years and strongly supported by many collaborators, Organic Thermoelectrics is a comprehensive reference on the subject and is invaluable for scientists and students in chemistry, materials, and engineering.




Innovative Thermoelectric Materials: Polymer, Nanostructure And Composite Thermoelectrics


Book Description

Power generation from environmentally friendly sources has led to surging interest in thermoelectrics. There has been a move toward alternative thermoelectric materials with enhanced performance through materials and structures that utilize common and safer elements and alternative mechanistic approaches while increasing processing latitude and decreasing cost. This wide-ranging volume examines this progress and future prospects with the new technologies, ease of processing and cost as major considerations, and will benefit active researchers, students and others interested in cutting-edge work in thermoelectric materials. Innovative Thermoelectric Materials incorporates the contributions of a group of recognized experts in thermoelectric materials, many of whom were the first to introduce various materials systems into thermoelectric systems. The perspectives brought to this evolving subject will provide important insights on which those developing the field can build, and will inspire new research directions for the future.




PEDOT


Book Description

While there is information available in handbooks on polythiophene chemistry and physics, until now, few if any books have focused exclusively on the most forwardly developed electrically conductive polymer, Poly (3,4-ethylenedioxythiophene)-otherwise known as PEDOT. This resource provides full chemical, physical, and technical information about this important conducting polymer, discussing basic knowledge and exploring its technical applications. Presented information is based on information generated at universities and through academic research, as well as by industrial scientists, providing a complete picture of the experimental and the practical aspects of this important polymer.




Thermoelectric Energy Conversion


Book Description

The latest volume in the well-established AMN series, this ready reference provides an up-to-date, self-contained summary of recent developments in the technologies and systems for thermoelectricity. Following an initial chapter that introduces the fundamentals and principles of thermoelectricity, subsequent chapters discuss the synthesis and integration of various bulk thermoelectric as well as nanostructured materials. The book then goes on to discuss characterization techniques, including various light and mechanic microscopy techniques, while also summarizing applications for thermoelectric materials, such as micro- and nano-thermoelectric generators, wearable electronics and energy conversion devices. The result is a bridge between industry and scientific researchers seeking to develop thermoelectric generators.




Advanced Thermoelectric Materials for Energy Harvesting Applications


Book Description

Advanced Thermoelectric Materials for Energy Harvesting Applications is a research-intensive textbook covering the fundamentals of thermoelectricity and the process of converting heat energy into electrical energy. It covers the design, implementation, and performance of existing and advanced thermoelectric materials. Chapters examine such topics as organic/inorganic thermoelectric materials, performance and behaviors of thermoelectric devices, and energy harvesting applications of thermoelectric devices.




Semiconducting Polymers


Book Description

Semiconducting polymers are of great interest for applications in electroluminescent devices, solar cells, batteries and diodes. In recent years vast advances have been made in the area of controlled synthesis of semiconducting polymers, specifically polythiophenes. The book is separated into two main sections, the first will introduce the advances made in polymer synthesis, and the second will focus on the microstructure and property analysis that has been enabled because of the recent advances in synthetic strategies. Edited by one of the leaders in the area of polythiophene synthesis, this new book will bring the field up to date with more recent models for understanding semiconducting polymers. The book will be applicable to materials and polymers chemists in industry and academia from postgraduate level upwards.




Conjugated Polymers


Book Description

This book covers properties, processing, and applications of conducting polymers. It discusses properties and characterization, including photophysics and transport. It then moves to processing and morphology of conducting polymers, covering such topics as printing, thermal processing, morphology evolution, conducting polymer composites, thin films




Introduction to Thermoelectricity


Book Description

Introduction to Thermoelectricity is the latest work by Professor Julian Goldsmid drawing on his 55 years experience in the field. The theory of the thermoelectric and related phenomena is presented in sufficient detail to enable researchers to understand their observations and develop improved thermoelectric materials. The methods for the selection of materials and their improvement are discussed. Thermoelectric materials for use in refrigeration and electrical generation are reviewed. Experimental techniques for the measurement of properties and for the production of thermoelements are described. Special emphasis is placed on nanotechnology which promises to yield great improvements in the efficiency of thermoelectric devices. Chapters are also devoted to transverse thermoelectric effects and thermionic energy conversion, both techniques offering the promise of important applications in the future.