DPSM for Modeling Engineering Problems


Book Description

This book is the first book on this technique; it describes the theory of DPSM in detail and covers its applications in ultrasonic, magnetic, electrostatic and electromagnetic problems in engineering. For the convenience of the users, the detailed theory of DPSM and its applications in different engineering fields are published here in one book making it easy to acquire a unified knowledge on DPSM.







Mechanics of Elastic Waves and Ultrasonic Nondestructive Evaluation


Book Description

Summary: This book presents necessary background knowledge on mechanics to understand and analyze elastic wave propagation in solids and fluids. This knowledge is necessary for elastic wave propagation modeling and for interpreting experimental data generated during ultrasonic nondestructive testing and evaluation (NDT&E). The book covers both linear and nonlinear analyses of ultrasonic NDT&E techniques. The materials presented here also include some exercise problems and solution manual. Therefore, this book can serve as a textbook or reference book for a graduate level course on elastic waves and/or ultrasonic nondestructive evaluation. It will be also useful for instructors who are interested in designing short courses on elastic wave propagation in solids or NDT&E. The materials covered in the first two chapters provide the fundamental knowledge on linear mechanics of deformable solids while Chapter 4 covers nonlinear mechanics. Thus, both linear and nonlinear ultrasonic techniques are covered here. Nonlinear ultrasonic techniques are becoming more popular in recent years for detecting very small defects and damages. However, this topic is hardly covered in currently available textbooks. Researchers mostly rely on published research papers and research monographs to learn about nonlinear ultrasonic techniques. Chapter 3 describes elastic wave propagation modeling techniques using DPSM. Chapter 5 is dedicated to an important and very active research field – acoustic source localization – that is essential for structural health monitoring and for localizing crack and other type of damage initiation regions. Features • Introduces Linear and Nonlinear ultrasonic techniques in a single book. • Commences with basic definitions of displacement, displacement gradient, traction and stress. • Provides step by step derivations of fundamental equations of mechanics as well as linear and nonlinear wave propagation analysis. • Discusses basic theory in addition to providing detailed NDE applications. • Provides extensive example and exercise problems along with an extensive solutions manual.




Computational Nondestructive Evaluation Handbook


Book Description

Introducing computational wave propagation methods developed over 40 years of research, this comprehensive book offers a computational approach to NDE of isotropic, anisotropic, and functionally graded materials. It discusses recent methods to enable enhanced computational efficiency for anisotropic materials. It offers an overview of the need for and uses of NDE simulation. The content provides a basic understanding of ultrasonic wave propagation through continuum mechanics and detailed discussions on the mathematical techniques of six computational methods to simulate NDE experiments. In this book, the pros and cons of each individual method are discussed and guidelines for selecting specific simulation methods for specific NDE scenarios are offered. Covers ultrasonic CNDE fundamentals to provide understanding of NDE simulation methods Offers a catalog of effective CNDE methods to evaluate and compare Provides exercises on real-life NDE problems with mathematical steps Discusses CNDE for common material types, including isotropic, anisotropic, and functionally graded materials Presents readers with practical knowledge on ultrasonic CNDE methods This work is an invaluable resource for researchers, advanced students, and industry professionals across materials, mechanical, civil, and aerospace engineering, and anyone seeking to enhance their understanding of computational approaches for advanced material evaluation methods.




Ultrasonic and Electromagnetic NDE for Structure and Material Characterization


Book Description

Most books on nondestructive evaluation (NDE) focus either on the theoretical background or on advanced applications. Bridging the gap between the two, Ultrasonic and Electromagnetic NDE for Structure and Material Characterization: Engineering and Biomedical Applications brings together the principles, equations, and applications of ultrasonic and




Structural Health Monitoring For Advanced Composite Structures


Book Description

Structural health monitoring (SHM) is a relatively new and alternative way of non-destructive inspection (NDI). It is the process of implementing a damage detection and characterization strategy for composite structures. The basis of SHM is the application of permanent fixed sensors on a structure, combined with minimum manual intervention to monitor its structural integrity. These sensors detect changes to the material and/or geometric properties of a structural system, including changes to the boundary conditions and system connectivity, which adversely affect the system's performance.This book's primary focus is on the diagnostics element of SHM, namely damage detection in composite structures. The techniques covered include the use of Piezoelectric transducers for active and passive Ultrasonics guided waves and electromechanical impedance measurements, and fiber optic sensors for strain sensing. It also includes numerical modeling of wave propagation in composite structures. Contributed chapters written by leading researchers in the field describe each of these techniques, making it a key text for researchers and NDI practitioners as well as postgraduate students in a number of specialties including materials, aerospace, mechanical and computational engineering.




Advanced Ultrasonic Methods for Material and Structure Inspection


Book Description

Ultrasonic signals are increasingly being used for predicting material behavior, both in an engineering context (detecting anomalies in a variety of structures) and a biological context (examining human bones, body parts and unborn fetuses). Featuring contributions from authors who are specialists in their subject area, this book presents new developments in ultrasonic research in both these areas, including ultrasonic NDE and other areas which go beyond traditional imaging techniques of internal defects. As such, both those in the biological and physical science communities will find this an informative and stimulating read.




European Workshop on Structural Health Monitoring


Book Description

This volume gathers the latest advances, innovations, and applications in the field of structural health monitoring (SHM) and more broadly in the fields of smart materials and intelligent systems. The volume covers highly diverse topics, including signal processing, smart sensors, autonomous systems, remote sensing and support, UAV platforms for SHM, Internet of Things, Industry 4.0, and SHM for civil structures and infrastructures. The contributions, which are published after a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists. The contents of this volume reflect the outcomes of the activities of EWSHM (European Workshop on Structural Health Monitoring) in 2020.




Metamaterials in Topological Acoustics


Book Description

Serves as a single resource on acoustic metamaterials and is the first book to discuss energy harvesting from metamaterials Covers the fundamentals of classical mechanics, quantum mechanics, and state-of-the-art condensed matter physics principles so that topological acoustics can be easily understood by engineers Introduces topological behaviors, acoustics hall effects, and applications Details smart materials and introduces different energy harvesting mechanisms for metamaterials followed by mechatronics packaging Explains the pros and cons of different design methods and gives guidelines for selecting specific designs of acoustic metamaterials with specific topological behaviors Includes MATLAB and Python code for numerical analysis




Electromagnetic Non-Destructive Evaluation (XXI)


Book Description

Electromagnetic Nondestructive Evaluation (ENDE) is a technique crucial to a great many engineering activities, as well as to environmental evaluation and protection issues. It is a discipline recognized for its theoretical insight, efficient models and simulations, robust data interpretation, and accurate instrumentation. This book presents contributions from the 22nd ENDE International Workshop, held in Saclay, France, in September 2017. It includes 1 of the 3 keynotes and 34 peer-reviewed and extended versions of the 47 oral contributions delivered during the workshop. Topics covered include static to THz electromagnetic; smart models and high-performance computations; advanced sensors; adaptive databases; model selection and the qualification of uncertainty; multi-sensor data fusion; the monitoring and diagnosis of mechanical structures; and innovative industrial applications. The book will be of interest to all those whose work involves the development or use of electromagnetic non-destructive evaluation.