Design and Delivery of SiRNA Therapeutics


Book Description

This volume details protocols on rationale design of therapeutic siRNA molecules and its encapsulation with smart vehicles to overcome the barriers to an effective administration in vivo. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Design and Delivery of SiRNA Therapeutics aims to ensure successful results in the further study of this vital field. This volume details protocols on rationale design of therapeutic siRNA molecules and its encapsulation with smart vehicles to overcome the barriers to an effective administration in vivo. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Design and Delivery of SiRNA Therapeutics aims to ensure successful results in the further study of this vital field.




Drug Delivery of SiRNA Therapeutics


Book Description

The new frontier of pharmaceutical sciences is gene therapy, which is the use of molecules able to interact directly with the expression of the genetic material of the patient as well as of the disease-causing guest (bacteria, virus, parasites, and tumor cells). Among the molecules of interest for gene therapy, a relevant role is played by small interfering RNA (siRNA) molecules able to interfere with the expression of genes of interest for some diseases. However, siRNA molecules, even if they are powerful as drugs, are difficult to deliver since they are sensitive to enzymes present in plasma and they are large and negatively charged, so are difficult to administer into the cell nuclei, since the cell walls are scarcely permeable to large molecules and are also negatively charged. Therefore, the focus of research on siRNA-based therapies is their delivery, which can be performed by chemical modification, association with aptamers or polycations, or embedding them into properly designed liposomes. This book is centered on the more recent development in siRNA delivery techniques toward the clinical applications of this potent class of drugs.




RNA Nanotechnology


Book Description

In the past few decades there has been incredible growth in "bionano"-related research, which has been accompanied by numerous publications in this field. Although various compilations address topics related to deoxyribonucleic acid (DNA) and protein, there are few books that focus on determining the structure of ribonucleic acid (RNA) and using RNA as building blocks to construct nanoarchitectures for biomedical and healthcare applications. RNA Nanotechnology is a comprehensive volume that details both the traditional approaches and the latest developments in the field of RNA-related technology. This book targets a wide audience: a broad introduction provides a solid academic background for students, researchers, and scientists who are unfamiliar with the subject, while the in-depth descriptions and discussions are useful for advanced professionals. The book opens with reviews on the basic aspects of RNA biology, computational approaches for predicting RNA structures, and traditional and emerging experimental approaches for probing RNA structures. This section is followed by explorations of the latest research and discoveries in RNA nanotechnology, including the design and construction of RNA-based nanostructures. The final segment of the book includes descriptions and discussions of the potential biological and therapeutic applications of small RNA molecules, such as small/short interfering RNAs (siRNAs), microRNAs (miRNAs), RNA aptamers, and ribozymes.




RNA Delivery Function for Anticancer Therapeutics


Book Description

This book presents an overview of the current status of translating the RNAi cancer therapeutics in the clinic, a brief description of the biological barriers in drug delivery, and the roles of imaging in aspects of administration route, systemic circulation, and cellular barriers for the clinical translation of RNAi cancer therapeutics, and with partial content for discussing the safety concerns. It then focuses on imaging-guided delivery of RNAi therapeutics in preclinical development, including the basic principles of different imaging modalities, and their advantages and limitations for biological imaging. With growing number of RNAi therapeutics entering the clinic, various imaging methods will play an important role in facilitating the translation of RNAi cancer therapeutics from bench to bedside. RNAi technique has become a powerful tool for basic research to selectively knock down gene expression in vitro and in vivo. Our scientific and industrial communities have started to develop RNAi therapeutics as the next class of drugs for treating a variety of genetic disorders, such as cancer and other diseases that are particularly hard to address with current treatment strategies. Key Features Provides insight into the current advances and hurdles of RNAi therapeutics. Accelerates RNAi, miRNAs, and siRNA drug development for cancer therapy from bench to bedside. Addresses various modifications and novel delivery strategies for miRNAs, piRNAs and siRNA delivery in anticancer therapeutics. Explores the need for the interaction of hematologists,cell biologists, immunologists, and material scientists in the development of novel cancer therapies. Describes the current status of clinical trials related to miRNA and siRNA-based cancer therapy Presents remaining issues that need to be overcome to establish successful therapies.




Therapeutic Oligonucleotides


Book Description

This book provides a compelling overall update on current status of RNA interference




Nucleic Acids as Gene Anticancer Drug Delivery Therapy


Book Description

Nucleic Acids as Gene Anticancer Drug Delivery Therapy highlights the most recent developments in cancer treatment using nucleic acids, nanoparticles and polymer nanoparticles for genomic nanocarriers as drug delivery, including promising opportunities for targeted and combination therapy. The development of a wide spectrum of nanoscale technologies is beginning to change the scientific landscape in terms of disease diagnosis, treatment, and prevention. This book presents the use of nanotechnology for medical applications, focusing on its use for anticancer drug delivery. Various intelligent drug delivery systems such as inorganic nanoparticles and polymer-based drug delivery are discussed. The use of smart drug delivery systems seems to be a promising approach for developing intelligent therapeutic systems for cancer immunotherapies and is discussed in detail along with nucleic acid-targeted drug delivery combination therapy for cancer. Nucleic Acids as Gene Anticancer Drug Delivery Therapy will be a useful reference for pharmaceutical scientists, pharmacologiests, and those involved in nanotechnology and cancer research. - Discusses intelligent drug delivery systems such as inorganic nanoparticles and polymer-based drug delivery - Contains a comprehensive comparison of various delivery systems, listing their advantages and limitations - Presents combination therapy as a new hope for enhancing current gene-based treatment efficacy




siRNA and miRNA Gene Silencing


Book Description

RNA interference has become a key method in the suppression of gene expression and the development of therapeutic agents, yet there is still the problem of delivery, stability, and the danger of off-target effects such as the silencing of unwanted genes and activation of innate immunity. In siRNA and miRNA Gene Silencing: From Bench to Bedside, expert researchers explore the most recent advances in siRNA design, expression, delivery, in vivo imaging, and methods to minimize siRNA’s unwanted effects and promote successful use in patients. As part of the highly successful Methods in Molecular BiologyTM series, the chapters focus on their respective subjects with easy-to-use, up-to-date information, including several step-by-step laboratory protocols on topics such as new delivery formulations and strategies with promising applications in vitro and in vivo, validated therapeutic target genes, and components of miRNA function, biogenesis, and interference with virus infection. Comprehensive and cutting-edge, siRNA and miRNA Gene Silencing: From Bench to Bedside offers an excellent collection of chapters to aid all those with an interest in RNAi, gene regulation, and new therapies.




Nanoparticle-Based Drug Delivery in Cancer Treatment


Book Description

The careful choice of nanoparticles as targets and in drug delivery routes enhances therapeutic efficacy in cancer. Nanoparticle-Based Drug Delivery in Cancer Treatment discusses nanotechnological developments of interfering RNA-based nanoparticles, delivery vehicles, and validated therapeutic RNAi–molecular target interactions and explains the results of clinical and preclinical trials. The book also gives strategies for universal methods of constructing hybrid organic–inorganic nanomaterials that can be widely applied in the biomedical field. Key Features: Reviews recent advances of nanoparticle-mediated siRNA delivery systems and their application in clinical trials for cancer therapy Focuses on material platforms that establish NPs and both localized and controlled gene silencing Emphasizes the most promising systems for clinical application Surveys progress in nanoparticle-based nanomedicine in cancer treatment Describes the most advanced of the nonviral nanocarriers for delivery of oligonucleotides to malignant blood cancer cells This book is a valuable resource for researchers, professors, and students researching drug delivery, gene carriers, cancer therapy, nanotechnology, and nanomaterials.




Therapeutic Applications of RNAi


Book Description

The phenomenon of RNA interference has rapidly moved from groundbreaking scientific discovery to promising therapeutic approach. However, even as RNAi-based drugs enter the clinic, significant challenges remain, particulary in the area of delivery. Therapeutic Applications of RNAi provides detailed protocols in key areas of current focus, including testing of delivery vehicles, identification of appropriate model systems, and evaluation of the effects of RNAi in vivo. Produced by a team of internationally renowned authors, the volume describes the therapeutic applications of RNAi and potential pitfalls in oncology, viral infections and CNS disease, using a variety of delivery methods, including liposomes, peptide-based nanoparticles, polycationic polymers, and viral vehicles. Written in the highly successful Methods in Molecular BiologyTM series format, the chapters include brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Therapeutic Applications of RNAi is an ideal guide for scientists attempting to solve the numerous challenges in this field and revolutionize the treatment of disease.




Smart Drug Delivery System


Book Description

This contribution book collects reviews and original articles from eminent experts working in the interdisciplinary arena of novel drug delivery systems and their uses. From their direct and recent experience, the readers can achieve a wide vision on the new and ongoing potentialities of different smart drug delivery systems. Since the advent of analytical techniques and capabilities to measure particle sizes in nanometer ranges, there has been tremendous interest in the use of nanoparticles for more efficient methods of drug delivery. On the other hand, this reference discusses advances in the design, optimization, and adaptation of gene delivery systems for the treatment of cancer, cardiovascular, diabetic, genetic, and infectious diseases, and considers assessment and review procedures involved in the development of gene-based pharmaceuticals.