Exploring Novel Clinical Trial Designs for Gene-Based Therapies


Book Description

Recognizing the potential design complexities and ethical issues associated with clinical trials for gene therapies, the Forum on Regenerative Medicine of the National Academies of Sciences, Engineering, and Medicine held a 1-day workshop in Washington, DC, on November 13, 2019. Speakers at the workshop discussed patient recruitment and selection for gene-based clinical trials, explored how the safety of new therapies is assessed, reviewed the challenges involving dose escalation, and spoke about ethical issues such as informed consent and the role of clinicians in recommending trials as options to their patients. The workshop also included discussions of topics related to gene therapies in the context of other available and potentially curative treatments, such as bone marrow transplantation for hemoglobinopathies. This publication summarizes the presentation and discussion of the workshop.




Rare Diseases and Orphan Products


Book Description

Rare diseases collectively affect millions of Americans of all ages, but developing drugs and medical devices to prevent, diagnose, and treat these conditions is challenging. The Institute of Medicine (IOM) recommends implementing an integrated national strategy to promote rare diseases research and product development.




Rare Disease Drug Development


Book Description

This book provides a broad overview of rare disease drug development. It offers unique insights from various perspectives, including third-party capital providers, caregivers, patient advocacy groups, drug development professionals, marketing and commercial experts, and patients. A unique reference, the book begins with narratives on the many challenges faced by rare disease patient and their caregivers. Subsequent chapters underscore the critical, multidimensional role of patient advocacy groups and the novel approaches to related clinical trials, investment decisions, and the optimization of rare disease registries. The book addresses various rare disease drug development processes by disciplines such as oncology, hematology, pediatrics, and gene therapy. Chapters then address the operational aspects of drug development, including approval processes, development accelerations, and market access strategies. The book concludes with reflections on the authors' case for real-world data and evidence generation in orphan medicinal drug development. Rare Disease Drug Development is an expertly written text optimized for biopharmaceutical R&D experts, commercial experts, third-party capital providers, patient advocacy groups, patients, and caregivers.




Gene Therapy of the Central Nervous System: From Bench to Bedside


Book Description

Few areas of biomedical research provide greater opportunities to capitalize upon the revolution in genomics and molecular biology than gene therapy. This is particularly true for the brain and nervous system, where gene transfer has become a key technology for basic research and has recently been translated to human therapy in several landmark clinical trials. Gene Therapy in the Brain: From Bench to Bedside represents the definitive volume on this subject. Edited by two pioneers of neurological gene therapy, this volume contains contributions by leaders who helped to create the field as well as those who are expanding the promise of gene therapy for the future of basic and clinical neuroscience. Drawing upon this extensive collective experience, this book provides clear and informative reviews on a variety of subjects which would be of interest to anyone who is currently using or contemplating exploring gene therapy for neurobiological applications. Basic gene transfer technologies are discussed, with particular emphases upon novel vehicles, immunological issues and the role of gene therapy in stem cells. Numerous research applications are reviewed, particularly in complex fields such as behavioral neurobiology. Several preclinical areas are also covered which are likely to translate into clinical studies in the near future, including epilepsy, pain and amyotrophic lateral sclerosis. Among the most exciting advances in recent years has been the use of neurological gene therapy in human clinical trials, including Parkinson's disease, Canavan disease and Batten disease. Finally, readers will find "insider" information on technological and regulatory issues which can often limit effective translation of even the most promising idea into clinical use. This work provides up-to-date information and key insights into those gene therapy issues which are important to both scientists and clinicians focusing upon the brain and central nervous system.




Pharmaceutical Biotechnology


Book Description

The field of pharmaceutical biotechnology is evolving rapidly. A whole new arsenal of protein pharmaceuticals is being produced by recombinant techniques for cancer, viral infections, cardiovascular and hereditary disorders, and other diseases. In addition, scientists are confronted with new technologies such as polymerase chain reactions, combinatorial chemistry and gene therapy. This introductory textbook provides extensive coverage of both the basic science and the applications of biotechnology-produced pharmaceuticals, with special emphasis on their clinical use. Pharmaceutical Biotechnology serves as a complete one-stop source for undergraduate pharmacists, and it is valuable for researchers and professionals in the pharmaceutical industry as well.




Improving and Accelerating Therapeutic Development for Nervous System Disorders


Book Description

Improving and Accelerating Therapeutic Development for Nervous System Disorders is the summary of a workshop convened by the IOM Forum on Neuroscience and Nervous System Disorders to examine opportunities to accelerate early phases of drug development for nervous system drug discovery. Workshop participants discussed challenges in neuroscience research for enabling faster entry of potential treatments into first-in-human trials, explored how new and emerging tools and technologies may improve the efficiency of research, and considered mechanisms to facilitate a more effective and efficient development pipeline. There are several challenges to the current drug development pipeline for nervous system disorders. The fundamental etiology and pathophysiology of many nervous system disorders are unknown and the brain is inaccessible to study, making it difficult to develop accurate models. Patient heterogeneity is high, disease pathology can occur years to decades before becoming clinically apparent, and diagnostic and treatment biomarkers are lacking. In addition, the lack of validated targets, limitations related to the predictive validity of animal models - the extent to which the model predicts clinical efficacy - and regulatory barriers can also impede translation and drug development for nervous system disorders. Improving and Accelerating Therapeutic Development for Nervous System Disorders identifies avenues for moving directly from cellular models to human trials, minimizing the need for animal models to test efficacy, and discusses the potential benefits and risks of such an approach. This report is a timely discussion of opportunities to improve early drug development with a focus toward preclinical trials.




Regulatory Aspects of Gene Therapy and Cell Therapy Products


Book Description

This book discusses the different regulatory pathways for gene therapy (GT) and cell therapy (CT) medicinal products implemented by national and international bodies throughout the world (e.g. North and South America, Europe, and Asia). Each chapter, authored by experts from various regulatory bodies throughout the international community, walks the reader through the applications of nonclinical research to translational clinical research to licensure for these innovative products. More specifically, each chapter offers insights into fundamental considerations that are essential for developers of CT and GT products, in the areas of product manufacturing, pharmacology and toxicology, and clinical trial design, as well as pertinent "must-know" guidelines and regulations. Regulatory Aspects of Gene Therapy and Cell Therapy Products: A Global Perspective is part of the American Society of Gene and Cell Therapy sub-series of the highly successful Advances in Experimental Medicine and Biology series. It is essential reading for graduate students, clinicians, and researchers interested in gene and cell therapy and the regulation of pharmaceuticals.




Oversight and Review of Clinical Gene Transfer Protocols


Book Description

Gene transfer research is a rapidly advancing field that involves the introduction of a genetic sequence into a human subject for research or diagnostic purposes. Clinical gene transfer trials are subject to regulation by the U.S. Food and Drug Administration (FDA) at the federal level and to oversight by institutional review boards (IRBs) and institutional biosafety committees (IBCs) at the local level before human subjects can be enrolled. In addition, at present all researchers and institutions funded by the National Institutes of Health (NIH) are required by NIH guidelines to submit human gene transfer protocols for advisory review by the NIH Recombinant DNA Advisory Committee (RAC). Some protocols are then selected for individual review and public discussion. Oversight and Review of Clinical Gene Transfer Protocols provides an assessment of the state of existing gene transfer science and the current regulatory and policy context under which research is investigated. This report assesses whether the current oversight of individual gene transfer protocols by the RAC continues to be necessary and offers recommendations concerning the criteria the NIH should employ to determine whether individual protocols should receive public review. The focus of this report is on the standards the RAC and NIH should use in exercising its oversight function. Oversight and Review of Clinical Gene Transfer Protocols will assist not only the RAC, but also research institutions and the general public with respect to utilizing and improving existing oversight processes.




The Role of NIH in Drug Development Innovation and Its Impact on Patient Access


Book Description

To explore the role of the National Institutes of Health (NIH) in innovative drug development and its impact on patient access, the Board on Health Care Services and the Board on Health Sciences Policy of the National Academies jointly hosted a public workshop on July 24â€"25, 2019, in Washington, DC. Workshop speakers and participants discussed the ways in which federal investments in biomedical research are translated into innovative therapies and considered approaches to ensure that the public has affordable access to the resulting new drugs. This publication summarizes the presentations and discussions from the workshop.




Innovative Methods for Rare Disease Drug Development


Book Description

In the United States, a rare disease is defined by the Orphan Drug Act as a disorder or condition that affects fewer than 200,000 persons. For the approval of "orphan" drug products for rare diseases, the traditional approach of power analysis for sample size calculation is not feasible because there are only limited number of subjects available for clinical trials. In this case, innovative approaches are needed for providing substantial evidence meeting the same standards for statistical assurance as drugs used to treat common conditions. Innovative Methods for Rare Disease Drug Development focuses on biostatistical applications in terms of design and analysis in pharmaceutical research and development from both regulatory and scientific (statistical) perspectives. Key Features: Reviews critical issues (e.g., endpoint/margin selection, sample size requirements, and complex innovative design). Provides better understanding of statistical concepts and methods which may be used in regulatory review and approval. Clarifies controversial statistical issues in regulatory review and approval accurately and reliably. Makes recommendations to evaluate rare diseases regulatory submissions. Proposes innovative study designs and statistical methods for rare diseases drug development, including n-of-1 trial design, adaptive trial design, and master protocols like platform trials. Provides insight regarding current regulatory guidance on rare diseases drug development like gene therapy.