Dual PH-sensitive Smart Coatings for Corrosion Protection of AA2024-T3


Book Description

To protect aluminum alloys including AA2024-T3 from corrosion, dual-pH sensitive smart coatings have been developed based on the encapsulation of inhibitor-loaded micro/nano-carriers. Previously reported pH-responsive coatings could only respond to either a pH increase or decrease during the corrosion process but not to both. To address this issue, a polyelectrolyte coacervate made from polyethylenimine and polyacrylic acid was developed. The obtained polyelectrolyte coacervate was found to degrade in the presence of either acidic or alkaline pH conditions. For the proof of concept, SrCrO4 as a model inhibitor was enclosed within the polyelectrolyte coacervate, and its release profile at different pH conditions was monitored by UV-vis spectroscopy. The entrapped SrCrO4 was released from the polyelectrolyte coacervate at a faster rate at both pH 2.5 and 10 compared to pH 7, and the released SrCrO4 inhibits the corrosion of AA2024-T3. Therefore, the developed polyelectrolyte coacervate is dual-pH sensitive and can be used to create a dual-pH responsive release system for corrosion protection of AA2024-T3. Dual-pH sensitive microspheres containing the corrosion inhibitor Ce(NO3)3 were fabricated with the polyelectrolyte coacervate as the shell material. Traditional preparation methods such as the layer-by-layer technique are time-consuming and require additional templates during the preparation process, so a simple and template-free coaxial electrospray method was developed to create Ce(NO3)3-loaded microspheres. The as-fabricated Ce(NO3)3-loaded microspheres have a core-shell structure and can release inhibitors when pH shifts to both acidic and alkaline regions. After introducing such microspheres into a polyvinyl butyral coating, the resulting coating system can improve the corrosion resistance of AA2024-T3. A microsphere-based smart coating might have limited corrosion inhibition applications due to the discrete distribution of microspheres within the coating and a negative impact on the integrity of the coating matrix. Thus, to address this issue, nanofibers containing a corrosion inhibitor were also developed. The nanofibers were prepared by the coaxial electrospinning technique with the chitosan/polyacrylic acid polyelectrolyte coacervate and Ce(NO3)3 as shell and core materials, respectively. The rendered nanofibers are also dual-pH sensitive and capable of releasing Ce(NO3)3 at both low and high pH conditions. A smart coating with embedded nanofibers can provide corrosion protection to AA2024-T3, and the nanofibers do not have a detrimental effect on the barrier property of the coating matrix. Furthermore, the nanofibers can facilitate the migration of Ce(NO3)3, leading to a continuous release of corrosion inhibitors at the same damaged site for repeated self-healing performance.




Smart Protective Coatings for Corrosion Control


Book Description

Smart Protective Coatings for Corrosion Control Overview of the latest research in advanced coatings for anticorrosion and the development of optimized surfaces with high anticorrosion ability Smart Protective Coatings for Corrosion Control introduces the newest research developments in self-healing coatings, self-reporting coatings, and superhydrophobic coatings, reviewing corrosion processes and strategies, smart coatings for corrosion protection, techniques for synthesizing and applying smart coatings, different kinds of self-healing and self-reporting coatings activated by different environmental stimuli, and current and future trends of protective coatings for automotive, aerospace, marine, nuclear, oil/gas, and military applications. This book also discusses new ideas in the field, such as the combination of self-healing and self-reporting properties, new techniques to study localized microscale electrochemical corrosion behavior, as well as atmospheric corrosion monitor technique to study the real-time protection behavior of coatings in different environments. The processes of coating degradation and metal corrosion are discussed in detail so that non-experts can gain a basic understanding of the corrosion protection techniques. Written by two highly qualified academics with significant research experience in the field, Smart Protective Coatings for Corrosion Control includes information on: Coating preparation, filler preparation, surface characterization, macroscopic and microscopic electrochemical properties, and self-healing performance of self-healing coating systems under different environmental stimuli Photothermal conversion species such as graphene oxide, titanium nitride, and Fe3O4 Different types of corrosion indicators, such as phenolphthalein, sulfosalicylic acid-modified carbon dots, and phenanthroline High-mobility polymer networks that endow a shape memory effect and allow coatings to recover their original shape and barrier properties Solutions to three corrosion conditions—room temperature immersion, alternating wet-dry, and outdoor atmospheric exposure conditions Presenting the latest research in the field, Smart Protective Coatings for Corrosion Control is a practical and highly valuable reference on the subject for scientists, researchers, and students in diverse programs of study.




Corrosion Protection at the Nanoscale


Book Description

Corrosion Protection at the Nanoscale explores fundamental concepts on how metals can be protected at the nanoscale by using both nanomaterials-based solutions, including nanoalloys, noninhibitors and nanocoatings. It is an important reference resource for both materials scientists and engineers wanting to find ways to create an efficient corrosion prevention strategy. Nanostructure materials have been widely used in many products, such as print electronics, contact, interconnection, implant, nanosensors and display units to lessen the impact of corrosion. Traditional methods for protection of metals include various techniques, such as coatings, inhibitors, electrochemical methods (anodic and cathodic protections), metallurgical design are covered in this book. Nanomaterials-based protective methods can offer many advantages over their traditional counterparts, such as protection for early-stage, higher corrosion resistance, better corrosion control. This book also outlines these advantages and discusses the challenges of implementing nanomaterials as corrosion protection agents on a wide scale. - Explains the main methods of detection, monitoring, testing, measurement and simulation of corrosion at the nanoscale - Explores how metals can be protected at the nanoscale using nanotechnology and nanomaterials - Discusses the major challenges of detecting and preventing corrosion at the nanoscale




Intelligent Coatings for Corrosion Control


Book Description

Intelligent Coatings for Corrosion Control covers the most current and comprehensive information on the emerging field of intelligent coatings. The book begins with a fundamental discussion of corrosion and corrosion protection through coatings, setting the stage for deeper discussion of the various types of smart coatings currently in use and in development, outlining their methods of synthesis and characterization, and their applications in a variety of corrosion settings. Further chapters provide insight into the ongoing research, current trends, and technical challenges in this rapidly progressing field. - Reviews fundamentals of corrosion and coatings for corrosion control before delving into a discussion of intelligent coatings—useful for researchers and grad students new to the subject - Covers the most current developments in intelligent coatings for corrosion control as presented by top researchers in the field - Includes many examples of current and potential applications of smart coatings to a variety of corrosion problems




Encapsulated Corrosion Inhibitors for Eco-Benign Smart Coatings


Book Description

This book covers all the recent advancements and technologies developed for encapsulated corrosion inhibitors-based coatings by using eco-benign and sustainable encapsulated smart coatings based on self-healing functionality. It includes overview of properties and applicability of encapsulated inhibitors, methodologies to detect corrosion, and recent developments made in the field of corrosion science to study the inhibition potential of encapsulated corrosion inhibitors for eco-benign smart coatings in several corrosive systems. Features: Covers encapsulation of the corrosion inhibitor which explores the self-healing mechanism of the smart coatings. Includes encapsulated corrosion inhibitor fabrication, synthesis, modeling, functionalization, classification, characteristics, and so forth. Reviews effectiveness and significant constraints of scale-up engineering. Discusses the fundamental characteristics of industrial-scale application research for encapsulated corrosion inhibitors. Explores entire aspects of encapsulated corrosion inhibitors-based sustainable smart coatings in one place. This book is aimed at researchers and graduate students of corrosion engineering, surface engineering, and chemistry engineering.




Advances In Smart Coatings And Thin Films For Future Industrial and Biomedical Engineering Applications


Book Description

Advances In Smart Coatings And Thin Films For Future Industrial and Biomedical Engineering Applications discusses in detail, the recent trends in designing, fabricating and manufacturing of smart coatings and thin films for future high-tech. industrial applications related to transportation, aerospace and biomedical engineering. Chapters cover fundamental aspects and diverse approaches used to fabricate smart self-healing anti-corrosion coatings, shape-memory coatings, polymeric and nano-bio-ceramic cotings, bio-inspired and stimuli-responsive coatings for smart surfaces with antibacterial activkity and controlled wettability, and electrically conductive coatings and their emerging applications. With the emphasis on advanced methodologies and recent emerging applications of smart multifunctional coatings and thin films, this book is essential reading for materials scientists and rsearchers working in chemical sciences, advanced materials, sensors, pharmaceutical and biomedical engineering. - Discusses the most recent advances and innovations in smart multifunctional coatings and thin films in the transportation, aerospace and biomedical engineering industries - Highlights the synthesis methods, processing, testing and characterization of smart coatings and thin films - Reviews the current prospects and future trends within the industry




Recent Advances in Smart Self-Healing Polymers and Composites


Book Description

There have been many new developments since the first edition of this book was published back in 2015. These can be summarized as follows: integration of multiple properties into self-healing polymer materials, such as the shape memory effect and flame retardancy; beyond self-healing and the development of recyclable thermoset polymers; and the application of self-healing polymers in both 3D and 4D printing. Recent Advances in Smart Self-healing Polymers and Composites, Second Edition provides a comprehensive introduction to the fascinating field of smart self-healing polymers and composites. All chapters are brought fully-up-to-date with the addition of six brand new contributions on the characterization of self-healing polymers, light-triggered self-healing, additive manufacturing, multifunctional thermoset polymers with self-healing ability, and recyclable thermoset polymers and 4D printing. It is written for a large readership including not only R&D researchers from diverse backgrounds such as chemistry, materials science, aerospace, physics, and biological science, but also for graduate student working on self-healing technologies as well as their newly developed applications. - Features new chapters on characterization of self-healing polymers, light-triggered self-healing, additive manufacturing, multifunctional thermoset polymers with self-healing ability, recyclable thermoset polymers and 4D printing - All chapters have been significantly updated from the previous edition - Provides a grounding in all key areas of research to bring people up to speed with the latest developments




Handbook of Smart Coatings for Materials Protection


Book Description

A smart coating is defined as one that changes its properties in response to an environmental stimulus. The Handbook of Smart Coatings for Materials Protection reviews the new generation of smart coatings for corrosion and other types of material protection. Part one explores the fundamentals of smart coatings for materials protection including types, materials, design, and processing. Chapters review corrosion processes and strategies for prevention; smart coatings for corrosion protection; techniques for synthesizing and applying smart coatings; multi-functional, self-healing coatings; and current and future trends of protective coatings for automotive, aerospace, and military applications. Chapters in part two focus on smart coatings with self-healing properties for corrosion protection, including self-healing anticorrosion coatings for structural and petrochemical engineering applications; smart self-healing coatings for corrosion protection of aluminum alloys, magnesium alloys and steel; smart nanocoatings for corrosion detection and control; and recent advances in polyaniline-based organic coatings for corrosion protection. Chapters in part three move on to highlight other types of smart coatings, including smart self-cleaning coatings for corrosion protection; smart polymer nanocomposite water- and oil-repellent coatings for aluminum; UV-curable organic polymer coatings for corrosion protection of steel; smart epoxy coatings for early detection of corrosion in steel and aluminum; and structural ceramics with self-healing properties. The Handbook of Smart Coatings for Materials Protection is a valuable reference for those concerned with preventing corrosion, particularly of metals, professionals working within the surface coating industries, as well as all those with an academic research interest in the field. - Reviews the new generation of smart coatings for corrosion and other types of material protection - Explores the fundamentals of smart coatings for materials protection including types, materials, design, and processing - Includes a focus on smart coatings with self-healing properties for corrosion protection




Microencapsulation Technology for Corrosion Mitigation by Smart Coatings


Book Description

A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain.




Horizons in Materials


Book Description

The Frontiers in Materials Editorial Office team are delighted to present the “Horizons in Materials” article collection, showcasing high-impact, authoritative, and accessible Review articles covering important topics at the forefront of the materials science and engineering field. All contributing authors were nominated by the Chief Editors and Editorial Office in recognition of their prominence and influence in their respective fields. The cutting-edge work presented in this article collection highlights the diversity of research performed across the entire breadth of the materials science and engineering field and reflects on the latest advances in theory, experiment, and methodology with applications to compelling problems. This Editorial features the corresponding author(s) of each paper published within this important collection, ordered by section alphabetically, highlighting them as the great researchers of the future. The Frontiers in Materials Chief Editors and Editorial Office team would like to thank each researcher who contributed their work to this collection. We are excited to see each article gain the deserved visibility and traction within the wider community, ensuring the collection’s truly global impact and success. Emily Young Journal Manager