Dwarf Galaxy Star Formation Histories in Local Group Cosmological Simulations


Book Description

Dwarf galaxies are powerful tools in the study of galactic evolution. As the most numerous galaxies in the universe, they probe a diverse range of environments: some exist in near-isolation, allowing us to study how a galaxy's evolution depends on its intrinsic properties. Others have been accreted by larger galaxies and show the impact of environmental processes such as tidal stripping. Because dwarf galaxies have shallow potential wells, these processes leave strong signatures in their star formation histories (SFHs). We use state-of-the-art cosmological hydrodynamical simulations to study the evolution of dwarf galaxies in Local Group analogues. Their SFHs are remarkably diverse, but also show robust average trends with stellar mass and environment. Low- mass isolated dwarfs (10^5




Evolution of Dwarf Galaxy Properties in Local Group Environments


Book Description

Understanding galaxy evolution depends on connecting large-scale structures determined by the [Lambda]CDM model with, at minimum, the small-scale physics of gas, star formation, and stellar feedback. Formation of galaxies within dark matter halos is sensitive to the physical phenomena occurring within and around the halo. This is especially true for dwarf galaxies, which have smaller potential wells and are more susceptible to the effects of tidal stripping and gas ionization and removal than larger galaxies. At dwarf galaxies scales comparisons of dark matter-only simulations with observations has unveiled various differences such as the core-cusp, the missing satellites, and the too big to fail problems. We have run suites of collisionless and hydrodynamical simulations of dwarf galaxies evolution in massive host environments to address these issues. We performed controlled, numerical simulations, which mimic the effects of baryons, in order to examine the assumptions implicitly made by dark matter-only simulations. The too big to fail problem is due to the overabundance of relatively massive, dense satellite galaxies found in simulations of Milky Way-like environments. We found that the removal of a small baryonic component from the central region of forming dwarf spheroidal galaxies and the inclusion of a disk component in the host galaxy can substantially reduce the central dark matter density of satellites, bringing simulations and observations of satellites into agreement. Additionally, we studied hydrodynamical simulations of massive host galaxies and their surrounding dwarf galaxy populations. The VELA simulation suite of cosmological zoom-in simulations is run with the ART code, stochastic star formation, and stellar feedback (supernovae feedback, stellar winds, radiation pressure, and photoionization pressure). The suite includes host galaxies with M[subscript vir](z = 0 ) = 1011 - 1012 M[sol] and their satellite dwarf galaxies and local isolated dwarf galaxies around each primary galaxy. We found that the inclusion of these relevant physical processes aligned the velocity functions and star formation histories of the dwarf galaxy populations closer to observations of the Local Group dwarf galaxies. By reproducing observations of dwarf galaxies we show how the inclusion of baryons in simulations relieves many of the discovered tensions between dark matter-only simulations and observations.




Understanding the Enrichment of Heavy Elements by the Chemodynamical Evolution Models of Dwarf Galaxies


Book Description

This book addresses the mechanism of enrichment of heavy elements in galaxies, a long standing problem in astronomy. It mainly focuses on explaining the origin of heavy elements by performing state-of-the-art, high-resolution hydrodynamic simulations of dwarf galaxies. In this book, the author successfully develops a model of galactic chemodynamical evolution by means of which the neutron star mergers can be used to explain the observed abundance pattern of the heavy elements synthesized by the rapid neutron capture process, such as europium, gold, and uranium in the Local Group dwarf galaxies. The book argues that heavy elements are significant indicators of the evolutionary history of the early galaxies, and presents theoretical findings that open new avenues to understanding the formation and evolution of galaxies based on the abundance of heavy elements in metal-poor stars.




Planets, Stars and Stellar Systems


Book Description

This is volume 5 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research, covering subjects of key interest to the main fields of contemporary astronomy. This volume on “Galactic Structure and Stellar Populations”, edited by Gerard F. Gilmore, presents accessible review chapters on Stellar Populations, Chemical Abundances as Population Tracers, Metal-Poor Stars and the Chemical Enrichment of the Universe, The Stellar and Sub-Stellar Initial Mass Function of Simple and Composite Populations, The Galactic Nucleus, The Galactic Bulge, Open Clusters and Their Role in the Galaxy, Star Counts and the Nature of Galactic Thick Disk, The Infrared Galaxy, Interstellar PAHs and Dust, Galactic Neutral Hydrogen, High-Velocity Clouds, Magnetic Fields in Galaxies, Astrophysics of Galactic Charged Cosmic Rays, Gamma-Ray Emission of Supernova Remnants and the Origin of Galactic Cosmic Rays, Galactic Distance Scales, Globular Cluster Dynamical Evolution, Dynamics of Disks and Warps, Mass Distribution and Rotation Curve in the Galaxy, Dark Matter in the Galactic Dwarf Spheroidal Satellites, and History of Dark Matter in Galaxies. All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in the 1960s and 1970s, each chapter of Planets, Stars and Stellar Systems can stand on its own as a fundamental review of its respective sub-discipline, and each volume can be used as a textbook or recommended reference work for advanced undergraduate or postgraduate courses. Advanced students and professional astronomers in their roles as both lecturers and researchers will welcome Planets, Stars and Stellar Systems as a comprehensive and pedagogical reference work on astronomy, astrophysics and cosmology.




Galaxies in the Local Volume


Book Description

This timely book presents an overview of the galaxies within the Local Volume, including the Local Group and our closest neighbours, the Andromeda Galaxy and the Magellanic Clouds. Presented here are the latest results from radio, infrared and optical surveys as well as detailed multi-wavelength studies of individual galaxies. The book aims to provide a vibrant forum for presentations and discussions across a broad range of astrophysical topics.




Near-Field Cosmology with Dwarf Elliptical Galaxies (IAU C198)


Book Description

Proceedings of IAUC 198, covering important issues related to near-field cosmology with dwarf elliptical galaxies.




The Origin of the Galaxy and Local Group


Book Description

This volume contains the updated and expanded lecture notes of the 37th Saas-Fee Advanced Course organised by the Swiss Society for Astrophysics and Astronomy. It offers the most comprehensive and up to date review of one of the hottest research topics in astrophysics - how our Milky Way galaxy formed. Joss Bland-Hawthorn & Ken Freeman lectured on Near Field Cosmology - The Origin of the Galaxy and the Local Group. Francesca Matteucci’s chapter is on Chemical evolution of the Milky Way and its Satellites. As designed by the SSAA, books in this series – and this one too – are targeted at graduate and PhD students and young researchers in astronomy, astrophysics and cosmology. Lecturers and researchers entering the field will also benefit from the book.




Groups of Galaxies in the Nearby Universe


Book Description

For every galaxy in the field or in clusters, there are about three galaxies in groups. The Milky Way itself resides in a group. Groups in the local universe offer the chance to study galaxies in environments characterized by strong interactions. In the cosmological context, groups trace large-scale structures better than clusters; the evolution of groups and clusters appears to be related. All these aspects of research are summarized in this book.




Planets, Stars and Stellar Systems


Book Description

This is volume 3 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research covering subjects of key interest to the main fields of contemporary astronomy. This volume on “Solar and Stellar Planetary Systems” edited by Linda French and Paul Kalas presents accessible review chapters From Disks to Planets, Dynamical Evolution of Planetary Systems, The Terrestrial Planets, Gas and Ice Giant Interiors, Atmospheres of Jovian Planets, Planetary Magnetospheres, Planetary Rings, An Overview of the Asteroids and Meteorites, Dusty Planetary Systems and Exoplanet Detection Methods. All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in the 1960s and 1970s, each chapter of Planets, Stars and Stellar Systems can stand on its own as a fundamental review of its respective sub-discipline, and each volume can be used as a textbook or recommended reference work for advanced undergraduate or postgraduate courses. Advanced students and professional astronomers in their roles as both lecturers and researchers will welcome Planets, Stars and Stellar Systems as a comprehensive and pedagogical reference work on astronomy, astrophysics and cosmology.




Star-Formation Rates of Galaxies


Book Description

Star-formation is one of the key processes that shape the current state and evolution of galaxies. This volume provides a comprehensive presentation of the different methods used to measure the intensity of recent or on-going star-forming activity in galaxies, discussing their advantages and complications in detail. It includes a thorough overview of the theoretical underpinnings of star-formation rate indicators, including topics such as stellar evolution and stellar spectra, the stellar initial mass function, and the physical conditions in the interstellar medium. The authors bring together in one place detailed and comparative discussions of traditional and new star-formation rate indicators, star-formation rate measurements in different spatial scales, and comparisons of star-formation rate indicators probing different stellar populations, along with the corresponding theoretical background. This is a useful reference for students and researchers working in the field of extragalactic astrophysics and studying star-formation in local and higher-redshift galaxies.