DX Centers in III-V Semiconductors Under Hydrostatic Pressure. [GaAs


Book Description

DX centers are deep level defects found in some III-V semiconductors. They have persistent photoconductivity and large difference between thermal and optical ionization energies. Hydrostatic pressure was used to study microstructure of these defects. A new local vibrational mode (LVM) was observed in hydrostatically stressed, Si-doped GaAs. Corresponding infrared absorption peak is distinct from the Si[sub Ga] shallow donor LVM peak, which is the only other LVM peak observed in our samples, and is assigned to the Si DX center. Analysis of the relative intensities of the Si DX LVM and the Si shallow donor LVM peaks, combined with Hall effect and resistivity indicate that the Si DX center is negatively charged. Frequency of this new mode provides clues to the structure of this defect. A pressure induced deep donor level in S-doped InP was also discovered which has the properties of a DX center. Pressure at which the new defect becomes more stable than the shallow donor is 82 kbar. Optical ionization energy and energy dependence of the optical absorption cross section was measured for this new effect. Capture barrier from the conduction band into the DX state were also determined. That DX centers can be formed in InP by pressure suggests that DX states should be common in n-type III-V semiconductors. A method is suggested for predicting under what conditions these defects will be the most stable form of the donor impurity.







High Pressure Semiconductor Physics I


Book Description

Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tradition will be maintained and even expanded. Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. Volumes 54 and 55 present contributions by leading researchers in the field of high pressure semiconductors. Edited by T. Suski and W. Paul, these volumes continue the tradition of well-known but outdated publications such as Brigman's The Physics of High Pressure (1931 and 1949) and High Pressure Physics and Chemistry edited by Bradley. Volumes 54 and 55 reflect the industrially important recent developments in research and applications of semiconductor properties and behavior under desirable risk-free conditions at high pressures. These developments include the advent of the diamond anvil cell technique and the availability of commercial piston cylinder apparatus operating at high hydrostatic pressures. These much-needed books will be useful to both researchers and practitioners in applied physics, materials science, and engineering.




Physics of DX Centers in GaAs Alloys


Book Description

The DX center is a defect present in Gallium Arsenide and related alloys when these materials are doped with n-type impurities.




Physics Of Semiconductors - Proceedings Of The 20th International Conference (In 3 Volumes)


Book Description

Gathering top experts in the field, the 20th ICPS proceedings reviews the progress in all aspects of semiconductor physics. The proceedings will include state-of-the-art lectures with special emphasis on exciting new developments. It should serve as excellent material for researchers in this and related fields.




Doping in III-V Semiconductors


Book Description

This is the first book to describe thoroughly the many facets of doping in compound semiconductors.




Topics in Growth and Device Processing of III-V Semiconductors


Book Description

This book describes advanced epitaxial growth and self-aligned processing techniques for the fabrication of III-V semiconductor devices such as heterojunction bipolar transistors and high electron mobility transistors. It is the first book to describe the use of carbon-doping and low damage dry etching techniques that have proved indispensable in making reliable, high performance devices. These devices are used in many applications such as cordless telephones and high speed lightwave communication systems.




D(X) Centres and other Metastable Defects in Semiconductors, Proceedings of the INT Symposium, Mauterndorf, Austria, 18-22 February 1991


Book Description

Since the first reports on metastable defects in III-V and II-VI compound semiconductors appeared in the late 1960s, the number of reports on defects with metastable states has been growing at an ever increasing rate. D(X)-center and other metastability defects cause many technical problems that are exacerbated by the uncertainty and controversy surrounding the mechanisms that cause them. A lively mix of theoretical and experimental discussions, D(X)-Centres and other Metastable Defects in Semiconductors presents a timely investigation of these systems. The book discusses topics such as, the validity of negative or positive U models, as well as alternative views that challenge existing ideas. The richness and precision of experimental data now emerging in the field is chronicled as are new investigative techniques. Based on an INT symposium, this book provides a successful forum where an extraordinary variety of ideas, including new perspectives, are examined critically.




Dopants and Defects in Semiconductors


Book Description

Praise for the First Edition "The book goes beyond the usual textbook in that it provides more specific examples of real-world defect physics ... an easy reading, broad introductory overview of the field" ―Materials Today "... well written, with clear, lucid explanations ..." ―Chemistry World This revised edition provides the most complete, up-to-date coverage of the fundamental knowledge of semiconductors, including a new chapter that expands on the latest technology and applications of semiconductors. In addition to inclusion of additional chapter problems and worked examples, it provides more detail on solid-state lighting (LEDs and laser diodes). The authors have achieved a unified overview of dopants and defects, offering a solid foundation for experimental methods and the theory of defects in semiconductors. Matthew D. McCluskey is a professor in the Department of Physics and Astronomy and Materials Science Program at Washington State University (WSU), Pullman, Washington. He received a Physics Ph.D. from the University of California (UC), Berkeley. Eugene E. Haller is a professor emeritus at the University of California, Berkeley, and a member of the National Academy of Engineering. He received a Ph.D. in Solid State and Applied Physics from the University of Basel, Switzerland.




Deep Centers in Semiconductors


Book Description

Examines several key semiconductor deep centers, all carefully chosen to illustrate a variety of essential concepts. A deep center is a lattice defect or impurity that causes very localized bound states and energies deep in the band gap. For each deep center chosen, a scientist instrumental in its development discusses the theoretical and experimental techniques used to understand that center. The second edition contains four new sections treating recent developments, including a chapter on hydrogen in crystalline semiconductors. Annotation copyright by Book News, Inc., Portland, OR