Intense Dynamic Loading Of Condensed Matter


Book Description

This book reviews the science and technology necessary to understand, predict, and simulate the phenomena associated with intense dynamic loading of matter. The book begins with background information on shock wave phenomena in materials and how they are measured. This includes materials with strength, materials undergoing dynamic phase transformations, and material fracturing. The authors then cover the phenomena associated with detonations, where the chemical energy release of an explosive is an integral part of the hydrodynamics and describe the formation and application of the semi-empirical equation of state. They develop the numerical techniques for doing realistic computer simulations of complicated dynamical processes associated with impacts. The book closes with reviews simulations, compared with experiments, for a variety of dynamic loading events, including laser and electron beam interactions with metals, high explosive loading of iron, and impacts of cometary dust on the Vega space probe as it crossed the tail of Hailey's comet.




Simple Views on Condensed Matter


Book Description

This volume contains a selection of important papers by P-G de Gennes (1991 Nobel Prize Winner in Physics) which have had a long-lasting impact on our understanding of condensed matter (solid state physics, liquid crystals, polymers, interfaces, wetting and adhesion). A typical example is the original article on "reptation" of polymer chains. The author has added some "afterthoughts" to the main papers (explaining their successes or weaknesses), and the current views on each special problem. Complex systems (polymers or granular matters, etc) are explained without heavy calculations -- using simple scaling laws as the main tool.




Dynamics of Ordering Processes in Condensed Matter


Book Description

The International Symposium on Dynamics of Ordering Processes in Condensed Matter was held at the Kansai Seminar House, Kyoto, for four days, from 27 to 30 August 1987, under the auspices of the Physical Soci ety of Japan. The symposium was financially supported by the four orga nizations and 45 companies listed on other pages in this volume. We are very grateful to all of them and particularly to the greatest sponsor, the Commemorative Association for the Japan World Exposition 1970. A total Df 22 invited lectures and 48 poster presentations were given and 110 participants attended from seven nations. An objective of the Symposium was to review and extend our present understanding of the dynamics of ordering processes in condensed matters, (for example, alloys, polymers and fluids), that are brought to an un stable state by sudden change of such external parameters as temperature and pressure. A second objective, no less important, was to identify new fields of science that might be investigated by similar, but sometimes more sophisticated, concepts and tactics. An emphasis was laid on those universal aspects of the laws governing the ordering processes which transcended the detailed differences among the substances used. The 71 lectures reproduced in this volume bear witness to the success of the Symposium in meeting amply the first objective and, to a lesser extent, the second.




Simple Views On Condensed Matter (3rd Edition)


Book Description

This volume is a selection of invaluable papers by P-G de Gennes — 1991 Nobel Prize winner in Physics — which have had a long-lasting impact on our understanding of condensed matter. Important ideas on polymers, liquid crystals and interfaces are described. The author has added some afterthoughts to the main papers (explaining their successes or weaknesses), and some current views on each special problem. The text is simple and easy to read.




Exploring the Fundamentals of Soft Condensed Matter Physics


Book Description

Overview of Soft Condensed Matter PhysicsSoft condensed matter physics is a fascinating field that focuses on the study of materials with properties between those of conventional solids and liquids. This subchapter aims to provide students with a comprehensive overview of soft condensed matter physics, exploring its fundamental concepts and applications. Soft condensed matter refers to a wide range of materials, including polymers, colloids, liquid crystals, and biological systems. These materials are often characterized by their ability to flow and deform under external forces, which makes them highly dynamic and responsive. Understanding their unique behavior and properties is crucial for various fields, including materials science, nanotechnology, biology, and medicine. One of the key concepts in soft condensed matter physics is the interplay between structure and dynamics. The arrangement of particles and molecules within these materials significantly influences their mechanical, thermal, and electrical properties. By studying the structure, scientists can gain insights into the material's behavior and its response to external stimuli. Another important aspect of soft condensed matter physics is the study of phase transitions. These transitions occur when a material undergoes a change in its physical properties due to external factors such as temperature, pressure, or concentration. Soft condensed matter systems often exhibit rich phase behavior, with the formation of various ordered and disordered structures. Understanding these phase transitions is crucial for developing new materials with tailored properties. The subchapter will also delve into the various experimental and theoretical techniques used in soft condensed matter physics. Students will learn about microscopy techniques, such as atomic force microscopy and electron microscopy, which allow for the visualization of materials at the nanoscale. They will also explore spectroscopic techniques, such as X-ray diffraction and nuclear magnetic resonance, which provide insights into the structure and dynamics of soft matter systems. Furthermore, this subchapter will highlight the interdisciplinary nature of soft condensed matter physics. Students will discover how concepts from physics, chemistry, and biology are combined to understand and manipulate soft materials. They will also explore the practical applications of soft condensed matter physics, such as the development of new drug delivery systems, smart materials, and advanced sensors.




An Introduction to the Properties of Condensed Matter


Book Description

This book covers the basic, mainly classical, physics of the properties of solids and liquids. The main emphasis is on macroscopic characteristics of materials, although their is some discussion of the atomic or molecular phenomena that underlie the macroscopic effects. Topics that are discussed in detail include the elastic properties of solids, with applications to acoustic waves and the deformation and stability of rods and struts; static and dynamic properties of liquids, with applications to interfacial phenomena and fluid flow characteristics; and diffusion in solids and liquids, with applications to Brownian motion, heat conduction and creep. The coverage combines treatments of the more traditional aspects of these topics with details of developments, such as novel materials, catastrophe theory and soliton propagation. This textbook will be suitable for second- and third-year undergraduates in universities and polytechnics taking courses in the properties of condensed matters in departments of physics, materials science and to some extent in engineering.




Condensed Matter Theories


Book Description

Pt. A. Statistical mechanics, magnetism, quantum and nonlinear dynamics. The groundstates and phases of the two-dimensional fully frustrated XY model / P. Minnhagen, S. Bernhardsson and B.J. Kim. 2D Ising model with competing interactions and its application to clusters and arrays of [symbol]-rings, graphene and adiabatic quantum computing / A. O'Hare, F.V. Kusmartsev and K.I. Kugel. Concerning the equation of state for a partially ionized system / G.A. Baker Jr. Quasiclassical Fourier path integral quantum correction terms to the kinetic energy of interacting quantum many-body systems / K.A. Gernoth. Ergodicity and chaos in a system of harmonic oscillators / M.H. Lee. Chaotic modes in scale free opinion networks / F.V. Kusmartsev and K.E. Kürten. Astroid curves for a synthetic antiferromagnetic stack in an applied magnetic field / D.M. Forrester [und weitere]. Entanglement properties of quantum many-body wave functions / J.W. Clark [und weitere] -- pt. B. Fermi and Bose fluids. Topological phase transitions in strongly correlated Fermi systems / J.W. Clark, V.A. Khodel and M.V. Zverev. Deconfinement and quantum liquid crystalline states of dipolar fermions in optical lattices / S.T. Carr, J. Quintanilla and J.J. Betouras. On the "generalized Slater" approximation / J. Messud [und weitere]. Fluid helium-4 in thermal equilibrium / K.A. Gernoth and M.L. Ristig. Microscopic approach in the description of slowing of electromagnetic pulses in BEC of alkalis / Y. Slyusarenko and A. Sotnikov. Anomalous behavior of ideal Fermi gas below 2D : The "ideal quantum dot" and the Paul exclusion principle / M. Grether, M. de Llano and M.H. Lee -- pt. C. Transport theory. On the quantum Hall effect in graphene / S. Fujita [und weitere]. Modelling charge transport in DNA using transfer matrices with diagonal terms / S.A. Wells, C.-T. Shih and R.A. Römer. Similarities between embolic stroke and percolation problems / J.P. Hague. Extraordinary magnetoresistance in hybrid semiconductor-metal systems / T.H. Hewett and F.V. Kusmartsev. Topological aspects of the specific heat / C.M. Sarris and A.N. Proto. Effects of electron-electron interactions in two dimensions / S.V. Kravchenko




Soft and Fragile Matter


Book Description

Covering colloids, polymers, surfactant phases, emulsions, and granular media, Soft and Fragile Matter: Nonequilibrium Dynamics, Metastability and Flow (PBK) provides self-contained and pedagogical coverage of the rapidly advancing field of systems driven out of equilibrium, with a strong emphasis on unifying conceptual principles rather than material-specific details. Written by internationally recognized experts, the book contains introductions at the level of a graduate course in soft condensed matter and statistical physics to the following areas: experimental techniques, polymers, rheology, colloids, computer simulation, surfactants, phase separation kinetics, driven systems, structural glasses, slow dynamics, and granular materials. These topics lead to a range of exciting applications at the forefront of current research, including microplasticity of emulsions, sequence design of copolymers, branched polymer dynamics, nucleation kinetics in colloids, multiscale modeling, flow-induced surfactant textures, fluid demixing under shear, two-time correlation functions, chaotic sedimentation dynamics, and sound propagation in powders. Balancing theory, simulation, and experiment, this broadly-based, pedagogical account of a rapidly developing field is an excellent compendium for graduate students and researchers in condensed matter physics, materials science, and physical chemistry.




Introduction To Condensed Matter Physics, Volume 1


Book Description

This is volume 1 of two-volume book that presents an excellent, comprehensive exposition of the multi-faceted subjects of modern condensed matter physics, unified within an original and coherent conceptual framework. Traditional subjects such as band theory and lattice dynamics are tightly organized in this framework, while many new developments emerge spontaneously from it. In this volume,• Basic concepts are emphasized; usually they are intuitively introduced, then more precisely formulated, and compared with correlated concepts.• A plethora of new topics, such as quasicrystals, photonic crystals, GMR, TMR, CMR, high Tc superconductors, Bose-Einstein condensation, etc., are presented with sharp physical insights.• Bond and band approaches are discussed in parallel, breaking the barrier between physics and chemistry.• A highly accessible chapter is included on correlated electronic states — rarely found in an introductory text.• Introductory chapters on tunneling, mesoscopic phenomena, and quantum-confined nanostructures constitute a sound foundation for nanoscience and nanotechnology.• The text is profusely illustrated with about 500 figures.