Distribution Power Systems and Power Quality


Book Description

High penetration of fluctuating renewable power units, such as wind turbines and photo voltaic systems, and new heavy loads, such as electrical vehicles and heat pumps, which so far might not be controlled according to the actual distribution grid condition, but rather according to actual consumption of the devices, influences the distribution grid in several ways, and it may lead to voltage disturbances, frequency deviations and harmonic content beyond limits. Over voltages might be generated at power production which is too high, whereas under voltage might occur at heavy load situations; both phenomena might be seen at the same distribution radial, where harmonic injections can also come from the devices, if equipped with power converters. This has led to the main target object for this book being power quality in distribution grids. This book offers 10 papers regarding power quality issues at distribution grids. It looks into hosting capacity issues, stability analysis, reliability assessment, mitigation of voltage rise using reactor installation, power quality assessments, harmonic analysis and damping, frequency control in weak and isolated power systems, and the focus is therefore broad within the overall topic of power quality.




Pulsewidth Modulated DC-to-DC Power Conversion


Book Description

ORGANIC REACTIONS CYCLIZATION REACTIONS OF NITROGEN-CENTERED RADICALS Stuart W. McCombie, Béatrice Quiclet-Sire, and Samir Z. Zard TRANSITION-METAL-CATALYZED AMINOOXYGENATION OF ALKENES Sherry R. Chemler, Dake Chen, Shuklendu D. Karyakarte, Jonathan M. Shikora, and Tomasz Wdowik




Power System Dynamics and Stability


Book Description

For a one-semester senior or beginning graduate level course in power system dynamics. This text begins with the fundamental laws for basic devices and systems in a mathematical modeling context. It includes systematic derivations of standard synchronous machine models with their fundamental controls. These individual models are interconnected for system analysis and simulation. Singular perturbation is used to derive and explain reduced-order models.




Modern Control of DC-Based Power Systems


Book Description

Modern Control of DC-Based Power Systems: A Problem-Based Approach addresses the future challenges of DC Grids in a problem-based context for practicing power engineers who are challenged with integrating DC grids in their existing architecture. This reference uses control theory to address the main concerns affecting these systems, things like generation capacity, limited maximum load demands and low installed inertia which are all set to increase as we move towards a full renewable model. Offering a new approach for a problem-based, practical approach, the book provides a coordinated view of the topic with MATLAB®, Simulink® files and additional ancillary material provided. - Includes Simulink® Files (of examples and for lab training classes) and MATLAB® files - Presents video slides to support the problem-based approach to understanding DC Power System control and application - Provides stability analysis of DC networks and examples of common stability problems




Small-signal stability, control and dynamic performance of power systems


Book Description

A thorough and exhaustive presentation of theoretical analysis and practical techniques for the small-signal analysis and control of large modern electric power systems as well as an assessment of their stability and damping performance.




Power System Modeling, Computation, and Control


Book Description

Provides students with an understanding of the modeling and practice in power system stability analysis and control design, as well as the computational tools used by commercial vendors Bringing together wind, FACTS, HVDC, and several other modern elements, this book gives readers everything they need to know about power systems. It makes learning complex power system concepts, models, and dynamics simpler and more efficient while providing modern viewpoints of power system analysis. Power System Modeling, Computation, and Control provides students with a new and detailed analysis of voltage stability; a simple example illustrating the BCU method of transient stability analysis; and one of only a few derivations of the transient synchronous machine model. It offers a discussion on reactive power consumption of induction motors during start-up to illustrate the low-voltage phenomenon observed in urban load centers. Damping controller designs using power system stabilizer, HVDC systems, static var compensator, and thyristor-controlled series compensation are also examined. In addition, there are chapters covering flexible AC transmission Systems (FACTS)—including both thyristor and voltage-sourced converter technology—and wind turbine generation and modeling. Simplifies the learning of complex power system concepts, models, and dynamics Provides chapters on power flow solution, voltage stability, simulation methods, transient stability, small signal stability, synchronous machine models (steady-state and dynamic models), excitation systems, and power system stabilizer design Includes advanced analysis of voltage stability, voltage recovery during motor starts, FACTS and their operation, damping control design using various control equipment, wind turbine models, and control Contains numerous examples, tables, figures of block diagrams, MATLAB plots, and problems involving real systems Written by experienced educators whose previous books and papers are used extensively by the international scientific community Power System Modeling, Computation, and Control is an ideal textbook for graduate students of the subject, as well as for power system engineers and control design professionals.




Handbook of Learning and Approximate Dynamic Programming


Book Description

A complete resource to Approximate Dynamic Programming (ADP), including on-line simulation code Provides a tutorial that readers can use to start implementing the learning algorithms provided in the book Includes ideas, directions, and recent results on current research issues and addresses applications where ADP has been successfully implemented The contributors are leading researchers in the field







Stability Analysis, Flexible Control and Optimal Operation of Microgrid


Book Description

This book intends to report the new results of the microgrid in stability analysis, flexible control and optimal operation. The oscillatory stability issue of DC microgrid is explored and further solved. Flexible and stable voltage & frequency control of microgrid is put forward considering the distributed generations or distributed energy storages. The optimal operation of multi-energy is researched in view of economic efficiency and low-carbon development. The results of this book are original from authors who carry out the related research together for a long time, which is a comprehensive summary for authors’ latest research results. The book is likely to be of interest to university researchers, electrical engineers and graduate students in power systems, power electronics, renewable energy and microgrid.




Mitigation of Negative Impedance Instabilities in DC Distribution Systems


Book Description

This book focuses on the mitigation of the destabilizing effects introduced by constant power loads (CPLs) in various non-isolated DC/DC converters and island DC microgrids using a robust non-linear sliding mode control (SMC) approach. This book validates theoretical concepts using real-time simulation studies and hardware implementations. Novel sliding mode controllers are proposed to mitigate negative impedance instabilities in DC/DC boost, buck, buck-boost, bidirectional buck-boost converters, and islanded DC microgrids. In each case, the condition for the large-signal stability of the converter feeding a CPL is established. An SMC-based nonlinear control scheme for an islanded DC microgrid feeding CPL dominated load is proposed so as to mitigate the destabilizing effect of CPL and to ensure system stability under various operating conditions. A limit on CPL power is also established to ensure system stability. For all proposed solutions, simulation studies and hardware implementations are provided to validate the effectiveness of the proposed sliding mode controllers.