Dynamic Modelling and Control of Reactive Distillation for Hydrogenation of Benzene


Book Description

This work presents a modeling and control study of a reactive distillation column used for hydrogenation of benzene. A steady state and a dynamic model have been developed to investigate control structures for the column. The most important aspects of this control problem are that the purity of the product streams regarding benzene need to be met. At the same time as little toluene as possible should be converted. The former is a constraint imposed by EPA regulations while the latter is tied to process economics due to the high octane number of toluene. It is required to satisfy both of these objectives even under the influence of disturbances, as the feed composition changes on a regular basis. The dynamic model is used for developing transfer function models of two potential control structures. Pairing of inputs and outputs is performed based upon the Relative Gain Array (RGA) and PI controllers were designed for each control structure. The controller performance was then compared in simulation studies. From our results, control structure 2 performed better than control structure 1. The main advantage of CS2 over CS1 is noticed in the simulation of feed composition disturbance rejection, where CS2 returns all variables back to steady state within 3 hrs while it take CS1 more than 20 hrs to return the temperature variables back to steady state.




Modeling and Control of Reactive Distillation for Alkylation Reactions


Book Description

A reactive distillation column for the alkylation of benzene with long chain linear olefin was studied. The study involved design, construction, experimentation, and simulation of the column. Establishing the design required study of reaction rates, thermodynamic relationships, and packing structures. A heuristic was developed for the design of such columns. This heuristic involved estimating an amount of catalyst loading and subsequently determining the operating parameters for a column. This method is particularly applicable to systems with high concentrations of inert feeds. A column was constructed following the design. Data was collected from the column and compared to simulations. The simulations were performed with Aspen Plus RADFRAC. In this manner, the data was used to validate the commercial steady state models for reactive distillation. In addition, dynamic simulations of the system were performed. These dynamic simulations provided insight into more design considerations. For example, steady state simulations indicated an optimal feed stage based on steady state conversion of the olefin. However, the dynamic simulations showed a potential disadvantage to the utilization of the optimal feed stage. With some disturbances, a column configured with the feed stage with the highest steady state conversion also deviated from the steady state faster and with greater amplitude than other configurations. These considerations were further explored in developing a control scheme for reactive distillation columns. Control of reactive distillation differs from traditional distillation in that one control variable is conversion. Traditional distillation generally focuses on production rates and product purity. To this end, control schemes were analyzed and dynamic simulations were performed. These simulations showed an advantage to a variable pairing in which duty is paired with conversion. The conversion was inferred from a stage temperature in the reactive zone. In addition, distillate rate may be paired with product composition. In conclusion, the reactive distillation column design for long chain olefin alkylation of benzene requires careful estimation of catalyst requirements and valid simulation tools. In addition, dynamic response should be considered in the design. Finally, a simple inferential control scheme may be adequate.




Reactive Distillation Design and Control


Book Description

After an overview of the fundamentals, limitations, and scope of reactive distillation, this book uses rigorous models for steady-state design and dynamic analysis of different types of reactive distillation columns and quantitatively compares the economics of reactive distillation columns with conventional multi-unit processes. It goes beyond traditional steady-state design that primarily considers the capital investment and energy costs when analyzing the control structure and the dynamic robustness of disturbances, and discusses how to maximize the economic and environmental benefits of reactive distillation technology.




Dynamic Modeling of a Reactive Distillation Column


Book Description

This research focuses on white box modeling of the dynamics of a reactive distillation column, precisely, one that is used for the commercial production of MTBE (methyl-tert-butyl-ether) by the reaction between methanol and isobutylene. The motivation for this study is mainly the process complexity posed by simultaneous reaction and separation which complicates the design and control of the column. In this study, an equilibrium model of reactive distillation column is developed in MATLAB by putting together the MESH equations and other equations like Francis weir formula and reaction rate law. Subsequently, the developed model is validated by comparison of simulation results with industrial data. Finally, the dynamic behaviour of the system is studied by applying step changes to each of the input variables, one at a time. The model of reactive distillation column is successfully developed. It is also proven to be a good representation of the column in the industry because model predictions and plant data come to a good agreement.




Reactive Distillation


Book Description

In a reactive distillation column, both the chemical conversion and the distillative separation of the product mixture are carried out simultaneously. Through this integrative strategy, chemical equilibrium limitations can be overcome, higher selectivities can be achieved and heat of reaction can be directly used for distillation. Increased process efficiency and reduction of investments and operational costs are the direct results of this approach. Highly renowned international experts from both industry and academia review the state-of-the-art and the future directions in application, design, analysis and control of Reactive Distillation processes. Part I surveys various industrial applications and covers both established large scale processes as well as new chemical reaction schemes with high future potential. Part II provides the vital details for analysis of reactive phase equilibria, and discusses the importance of chemical reaction kinetics, while Part III focuses on identifying feasible column configurations and designing their internal structure. Analysis and control of the complex dynamic and steady-state behavior of reactive distillation processes are described in Part IV. Reactive Distillation - a very promising alternative to conventional reaction-distillation flow schemes.










Distillation Design and Control Using Aspen Simulation


Book Description

A timely treatment of distillationcombining steady-state designand dynamic controllability As the world continues to seek new sources of energy, the distillation process remains one of the most important separation methods in the chemical, petroleum, and energy industries. And as new renewable sources of energy and chemical feedstocks become more universally utilized, the issues of distillation design and control will remain vital to a future sustainable lifestyle. Distillation Design and Control Using Aspen Simulation introduces the current status and future implications of this vital technology from the dual perspectives of steady-state design and dynamics. Where traditional design texts have focused mainly on the steady-state economic aspects of distillation design, William Luyben also addresses such issues as dynamic performance in the face of disturbances. Utilizing the commercial simulators Aspen Plus and Aspen Dynamics, the text guides future and practicing chemical engineers first in the development of optimal steady-state designs of distillation systems, and then in the development of effective control structures. Unique features of the text include: * In-depth coverage of the dynamics of column design to help develop effective control structures for distillation columns * Development of rigorous simulations of single distillation columns and sequences of columns * Coverage of design and control of petroleum fractionators Encompassing nearly four decades of research and practical developments in this dynamic field, the text represents an important reference for both students and experienced engineers faced with distillation problems.