Dynamic Optical Investigations of Hypervelocity Impact Damage


Book Description

One of the prominent threats in the endeavor to develop next-generation space assets is the risk of space debris impact in earth's orbit and micrometeoroid impact damage in near-earth orbit and deep space. To date, there is no study available which concentrates on the analysis of dynamic crack growth from hypervelocity impacts on such structures, resulting in their eventual catastrophic degradation. Experiments conducted using a unique two-stage light-gas gun facility have examined the in situ dynamic fracture of brittle polymers subjected to this high-energy-density event. Optical techniques of caustics and photoelasticity, combined with high-speed photography up to 100 million frames per second, analyze crack growth behavior of Mylar and Homalite 100 thin plates after impact by a 1.8 mm diameter nylon 6-6 right cylindrical slug at velocities ranging from 3 to 7 km/s (7000-15500 mph). Crack speeds in both polymers averaged between 0.2 and 0.47 cR, the Rayleigh wave speed (450-1000 mph). Shadow spots and surrounding caustics reveal time histories of the dynamic stress intensity factor, as well as the energy release rate ahead of the mode-I, or opening, crack tips. Results indicate that even under extreme impact conditions of out of-plane loading, highly localized heating, and energetic impact phenomena involving plasma formation and ejecta, the dynamic fracture process occurs during a deformation regime dominated by in-plane loading. These findings imply that the reliability of impacted, thin-walled, plate and shell space structures, idealized by the experimental configuration investigated, can be predicted by the well defined principles of classical dynamic fracture mechanics.




Dynamic Behavior of Materials, Volume 1


Book Description

Dynamic Behavior of Materials, Volume 1: Proceedings of the 2010 Annual Conference on Experimental and Applied Mechanics, the first volume of six from the Conference, brings together 71 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Materials Science, including papers on Composite Materials, Dynamic Failure and Fracture, Dynamic Materials Response, Novel Testing Techniques, Low Impedance Materials, Metallic Materials, Response of Brittle Materials, Time Dependent Materials, High Strain Rate Testing of Biological and Soft Materials, Shock and High Pressure Response, Energetic Materials, Optical Techniques for Imaging High Strain Rate Material Response, and Modeling of Dynamic Response.




Investigation of Optical Damage, Energy Partitioning and Scaling Laws at Extremely High Velocities


Book Description

Optical damage assessment is presented from analysis of retrieved space damaged material (solar cell arrays); results, show a peak in the space environment damage effects in millimetre region and a dominance by meteoroids in this region. Impact damage features on glass will be folded with the results of the energy partitioning which derive from the unique 2 MV Van de Graaff facility achieving (in this report) velocities of up to 42 km sec-1. Results from experimental campaigns incorporating simultaneous measurement of impact plasma, impact light flash and momentum enhancement provide new data on the fundamental features of energy partitioning in hypervelocity impacts phenomena such as ejecta momentum and kinetic energy, plasma and vapour production, and light flash energies. Hydrocode simulations are also described, which give insight into energy partitioning. Results from a study of the impact light flash are presented which have proven principles of the prototype chamber design. Results which complement the energy partitioning data obtained from the plasma studies show readily the sensitivity of this technique as a study tool on the Van de Graaff facility. (AN).




Investigation of Hypervelocity Impact Phenomena Using Real-time Concurrent Diagnostics


Book Description

Hypervelocity impact of meteoroids and orbital debris poses a serious and growing threat to spacecraft. To study hypervelocity impact phenomena, a comprehensive ensemble of real-time concurrently operated diagnostics has been developed and implemented in the Small Particle Hypervelocity Impact Range (SPHIR) facility. This suite of simultaneously operated instrumentation provides multiple complementary measurements that facilitate the characterization of many impact phenomena in a single experiment. The investigation of hypervelocity impact phenomena described in this work focuses on normal impacts of 1.8 mm nylon 6/6 cylinder projectiles and variable thickness aluminum targets. The SPHIR facility two-stage light-gas gun is capable of routinely launching 5.5 mg nylon impactors to speeds of 5 to 7 km/s. Refinement of legacy SPHIR operation procedures and the investigation of first-stage pressure have improved the velocity performance of the facility, resulting in an increase in average impact velocity of at least 0.57 km/s. Results for the perforation area indicate the considered range of target thicknesses represent multiple regimes describing the non-monotonic scaling of target perforation with decreasing target thickness. The laser side-lighting (LSL) system has been developed to provide ultra-high-speed shadowgraph images of the impact event. This novel optical technique is demonstrated to characterize the propagation velocity and two-dimensional optical density of impact-generated debris clouds. Additionally, a debris capture system is located behind the target during every experiment to provide complementary information regarding the trajectory distribution and penetration depth of individual debris particles. The utilization of a coherent, collimated illumination source in the LSL system facilitates the simultaneous measurement of impact phenomena with near-IR and UV-vis spectrograph systems. Comparison of LSL images to concurrent IR results indicates two distinctly different phenomena. A high-speed, pressure-dependent IR-emitting cloud is observed in experiments to expand at velocities much higher than the debris and ejecta phenomena observed using the LSL system. In double-plate target configurations, this phenomena is observed to interact with the rear-wall several micro-seconds before the subsequent arrival of the debris cloud. Additionally, dimensional analysis presented by Whitham for blast waves is shown to describe the pressure-dependent radial expansion of the observed IR-emitting phenomena. Although this work focuses on a single hypervelocity impact configuration, the diagnostic capabilities and techniques described can be used with a wide variety of impactors, materials, and geometries to investigate any number of engineering and scientific problems.







Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




High-Velocity Impact Phenomena


Book Description

High-Velocity Impact Phenomena covers a wide range of pertinent topics dealing with impact phenomena. The book discusses hypervelocity accelerators; stress wave propagation in solids; and the theory of impact. The text also describes the application of the theory of impact on thin targets and shields and correlation with experiment; the numerical evaluation of hypervelocity impact phenomena; and analytical studies of impact-generated shock propagation. The equation of state of solids from shock wave studies; metallurgical observations and energy partitioning; and engineering considerations in hypervelocity impact are also encompassed. Design engineers will find the book invaluable.







Hypervelocity Impact Physics


Book Description

All large spacecraft are susceptible to impacts by meteoroids and orbiting space debris. These impacts occur at extremely high speed and can damage flight-critical systems, which can in turn lead to a catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for a long-duration mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystems components. The work performed under the contract consisted of applied research on the effects of meteoroid/space debris impacts on candidate materials, design configurations, and support mechanisms of long term space vehicles. Hypervelocity impact mechanics was used to analyze the damage that occurs when a space vehicle is impacted by a micrometeoroid or a space debris particle. An impact analysis of over 500 test specimens was performed to generate by a hypervelocity impact damage database. Schonberg, William P. and Bean, Alan J. and Darzi, Kent Unspecified Center NASA-CR-4343, NAS 1.26:4343 NAS8-36955...