Dynamic Optimization of Path-Constrained Switched Systems


Book Description

This book provides a series of systematic theoretical results and numerical solution algorithms for dynamic optimization problems of switched systems within infinite-dimensional inequality path constraints. Dynamic optimization of path-constrained switched systems is a challenging task due to the complexity from seeking the best combinatorial optimization among the system input, switch times and switching sequences. Meanwhile, to ensure safety and guarantee product quality, path constraints are required to be rigorously satisfied (i.e., at an infinite number of time points) within a finite number of iterations. Several novel methodologies are presented by using dynamic optimization and semi-infinite programming techniques. The core advantages of our new approaches lie in two folds: i) The system input, switch times and the switching sequence can be optimized simultaneously. ii) The proposed algorithms terminate within finite iterations while coming with a certification of feasibility for the path constraints. In this book, first, we provide brief surveys on dynamic optimization of path-constrained systems and switched systems. For switched systems with a fixed switching sequence, we propose a bi-level algorithm, in which the input is optimized at the inner level, and the switch times are updated at the outer level by using the gradient information of the optimal value function calculated at the optimal input. We then propose an efficient single-level algorithm by optimizing the input and switch times simultaneously, which greatly reduces the number of nonlinear programs and the computational burden. For switched systems with free switching sequences, we propose a solution framework for dynamic optimization of path-constrained switched systems by employing the variant 2 of generalized Benders decomposition technique. In this framework, we adopt two different system formulations in the primal and master problem construction and explicitly characterize the switching sequences by introducing a binary variable. Finally, we propose a multi-objective dynamic optimization algorithm for locating approximated local Pareto solutions and quantitatively analyze the approximation optimality of the obtained solutions. This book provides a unified framework of dynamic optimization of path-constrained switched systems. It can therefore serve as a useful book for researchers and graduate students who are interested in knowing the state of the art of dynamic optimization of switched systems, as well as recent advances in path-constrained optimization problems. It is a useful source of up-to-date optimization methods and algorithms for researchers who study switched systems and graduate students of control theory and control engineering. In addition, it is also a useful source for engineers who work in the control and optimization fields such as robotics, chemical engineering and industrial processes.




Applied and Computational Optimal Control


Book Description

The aim of this book is to furnish the reader with a rigorous and detailed exposition of the concept of control parametrization and time scaling transformation. It presents computational solution techniques for a special class of constrained optimal control problems as well as applications to some practical examples. The book may be considered an extension of the 1991 monograph A Unified Computational Approach Optimal Control Problems, by K.L. Teo, C.J. Goh, and K.H. Wong. This publication discusses the development of new theory and computational methods for solving various optimal control problems numerically and in a unified fashion. To keep the book accessible and uniform, it includes those results developed by the authors, their students, and their past and present collaborators. A brief review of methods that are not covered in this exposition, is also included. Knowledge gained from this book may inspire advancement of new techniques to solve complex problems that arise in the future. This book is intended as reference for researchers in mathematics, engineering, and other sciences, graduate students and practitioners who apply optimal control methods in their work. It may be appropriate reading material for a graduate level seminar or as a text for a course in optimal control.




26th European Symposium on Computer Aided Process Engineering


Book Description

26th European Symposium on Computer Aided Process Engineering contains the papers presented at the 26th European Society of Computer-Aided Process Engineering (ESCAPE) Event held at Portorož Slovenia, from June 12th to June 15th, 2016. Themes discussed at the conference include Process-product Synthesis, Design and Integration, Modelling, Numerical analysis, Simulation and Optimization, Process Operations and Control and Education in CAPE/PSE. Presents findings and discussions from the 26th European Society of Computer-Aided Process Engineering (ESCAPE) Event




Control and Optimisation of Process Systems


Book Description

Advances in Chemical Engineering was established in 1960 and is the definitive serial in the area. It is one of great importance to organic chemists, polymer chemists, and many biological scientists. Written by established authorities in the field, the comprehensive reviews combine descriptive chemistry and mechanistic insight and yield an understanding of how the chemistry drives the properties. This volume focuses on control and optimisation of process systems. - Advances in Chemical Engineering was established in 1960 and is the definitive serial in the area. It is one of great importance to organic chemists, polymer chemists, and many biological scientists - Written by established authorities in the field, the comprehensive reviews combine descriptive chemistry and mechanistic insight and yield an understanding of how the chemistry drives the properties - Focuses on control and optimization of process systems




Handbook of Hybrid Systems Control


Book Description

Sets out core theory and reviews new methods and applications to show how hybrid systems can be modelled and understood.




Developments in Model-Based Optimization and Control


Book Description

This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: · complexity and structure in model predictive control (MPC); · collaborative MPC; · distributed MPC; · optimization-based analysis and design; and · applications to bioprocesses, multivehicle systems or energy management. The various contributions cover a subject spectrum including inverse optimality and more modern decentralized and cooperative formulations of receding-horizon optimal control. Readers will find fourteen chapters dedicated to optimization-based tools for robustness analysis, and decision-making in relation to feedback mechanisms—fault detection, for example—and three chapters putting forward applications where the model-based optimization brings a novel perspective. Developments in Model-Based Optimization and Control is a selection of contributions expanded and updated from the Optimisation-based Control and Estimation workshops held in November 2013 and November 2014. It forms a useful resource for academic researchers and graduate students interested in the state of the art in predictive control. Control engineers working in model-based optimization and control, particularly in its bioprocess applications will also find this collection instructive.




Control of Stochastic Hybrid Systems based on Probabilistic Reachable Set Computation


Book Description

This thesis proposes an algorithmic controller synthesis based on the computation of probabilistic reachable sets for stochastic hybrid systems. Hybrid systems consist in general of a composition of discrete and continuous valued dynamics, and are able to capture a wide range of physical phenomena. The stochasticity is considered in form of normally distributed initial continuous states and normally distributed disturbances, resulting in stochastic hybrid systems. The reachable sets describe all states, which are reachable by a system for a given initialization of the system state, inputs, disturbances, and time horizon. For stochastic hybrid systems, these sets are probabilistic, since the system state and disturbance are random variables. This thesis introduces probabilistic reachable sets with a predefined confidence, which are used in an optimization based procedure for the determination of stabilizing control inputs. Besides the stabilizing property, the controlled dynamics also observes input constraints, as well as, so-called chance constraints for the continuous state. The main contribution of this thesis is the formulation of an algorithmic control procedure for each considerd type of stochastic hybrid systems, where different discrete dynamics are considered. First, a control procedure for a deterministic system with bounded disturbances is introduced, and thereafter a probabilistic distribution of the system state and the disturbance is assumed. The formulation of probabilistic reachable sets with a predefined confidence is subsequently used in a control procedure for a stochastic hybrid system, in which the switch of the continuous dynamics is externally induced. Finally, the control procedure based on reachable set computation is extended to a type of stochastic hybrid systems with autonomously switching of the continuous dynamics.




Switching and Learning in Feedback Systems


Book Description

This book presents the outcome of the European Summer School on Multi-agent Control, held in Maynooth, Ireland in September 2003. The past decade witnessed remarkable progress in the area of dynamic systems with the emergence of a number of powerful methods for both modeling and controlling uncertain dynamic systems. The first two parts of this book present tutorial lectures by leading researchers in the area introducing the reader to recent achievements on switching and control and on Gaussian processes. The third part is devoted to the presentation of original research contributions in the area; among the topics addressed are car control, bounding algorithms, networked control systems, the theory of linear systems, Bayesian modeling, and surveying multiagent systems.




Dynamic Optimization in Environmental Economics


Book Description

The book presents new developments in the dynamic modeling and optimization methods in environmental economics and provides a huge range of applications dealing with the economics of natural resources, the impacts of climate change and of environmental pollution, and respective policy measures. The interrelationship between economic activities and environmental quality, the development of cleaner technologies, the switch from fossil to renewable resources and the proper use of policy instruments play an important role along the path towards a sustainable future. Biological, physical and economic processes are naturally involved in the subject, and postulate the main modelling, simulation and decision-making tools: the methods of dynamic optimization and dynamic games.




Optimization in Food Engineering


Book Description

While mathematically sophisticated methods can be used to better understand and improve processes, the nonlinear nature of food processing models can make their dynamic optimization a daunting task. With contributions from a virtual who's who in the food processing industry, Optimization in Food Engineering evaluates the potential uses and limitati