Resource Allocation for OFDMA Systems


Book Description

This book introduces the sources and historic collection campaigns of resource allocation in wireless communication systems. The unique characteristics of MIMO-OFDMA systems are thoroughly studied and summarized. Remarks on resource allocation and spectrum sharing are also presented, which demonstrate the great value of resource allocation techniques, but also introduce distinct challenges of resource allocation in MIMO-OFDMA systems. Novel resource allocation techniques for OFDMA Systems are surveyed from various applications (e.g., for unicast, or multicast with Guaranteed BER and Rate, subcarrier and power allocation with various detectors, low-complexity energyefficient resource allocation, etc.) in this book. Due to the high mobility and low latency requirements of 5G wireless communications, this book discusses how to deal with the imperfect CSI. It also discusses how to deal with e.g., throughput maximization, outage probabilities maximization and guarantee, energy efficiency, physical-layer security issues with feedback channel capacity constraints, in order to characterize and understand the applications of practical scenes. This book will target professionals & researchers working in the fields of Wireless Communications and Networking, Resource Allocation and Transmissions. Advanced-level students in electrical engineering and computer science will also find this book useful as a secondary textbook.




Dynamic Resource Allocation for OFDM Downlink Transmission in Multimedia Mobile Cellular Systems


Book Description

"One of the main objectives of the next generation of mobile communications is to provide cost-effective transmission of broadband multimedia services over time-varying, frequency-selective fading, band-limited wireless channels. Orthogonal Frequency Division Multiplexing (OFDM) with dynamic resource allocation is one of the potential techniques to improve the system spectral efficiency. In this work, efficient dynamic resource allocation algorithms are developed for downlink OFDM mobile cellular systems to support multimedia traffic. User channel responses are considered in the dynamic resource allocation to reduce interference and hence, to increase the system spectral efficiency while maintaining different Quality-of-Service (QoS) requirements. Performance of the proposed algorithms in terms of system throughput, fraction of satisfied users for voice, video, data and mixed services in multicell mobile communications systems is evaluated using analysis and simulation." --




On the Use of Hierarchical Modulation for Resource Allocation in OFDMA-based Networks


Book Description

We investigate, in this thesis, the use of Hierarchical Modulation (HM), a physical layer technique that enables to exploit multiuser diversity, for resource allocation in OFDMA-based systems with and without use of relaying, so as to improve the system capacity. HM allows the sharing of the resources, namely subcarriers and power, between users of different radio conditions by sending an additional stream to a user with good radio conditions on a subcarrier that was initially allocated to carry an original stream to a user with lower radio conditions. And this, without affecting the original user's rate nor the total amount of power assigned to the shared subcarrier. In the literature, most of the works that consider the use of HM focus solely on the physical layer performance, notably in terms of the bit error rate. And this for a static user scenario,i.e., with a fixed number of users in the system, each with an infinite service duration. This configuration however does not reflect the real system behavior where the number of users is dynamic, i.e., the users come to the system at random time epochs and leave it after a finite duration, corresponding to the completion of their services. The study of the system at the flow-level, as opposed to the packet level, for a dynamic user configuration, enables us to investigate the realistic relationship between capacity and demand and to quantify several system-level performance metrics, such as mean transfer times and blocking rates, which are meaningful both to the user and the network operator/provider.




Resource Allocation for Wireless Networks


Book Description

Merging the fundamental principles of resource allocation with the state-of-the-art in research and application examples, Han and Liu present a novel and comprehensive perspective for improving wireless systems performance. Cross-layer multiuser optimization in wireless networks is described systematically. Starting from the basic principles, such as power control and multiple access, coverage moves to the optimization techniques for resource allocation, including formulation and analysis, and game theory. Advanced topics such as dynamic resource allocation and resource allocation in antenna array processing, and in cooperative, sensor, personal area, and ultrawideband networks, are then discussed. Unique in its scope, timeliness, and innovative author insights, this invaluable work will help graduate students and researchers to understand the basics of wireless resource allocation whilst highlighting modern research topics, and will help industrial engineers to improve system optimization.




Dynamic Spectrum Management


Book Description

This open access book, authored by a world-leading researcher in this field, describes fundamentals of dynamic spectrum management, provides a systematic overview on the enabling technologies covering cognitive radio, blockchain, and artificial intelligence, and offers valuable guidance for designing advanced wireless communications systems. This book is intended for a broad range of readers, including students and professionals in this field, as well as radio spectrum policy makers.