Dynamic Spin-Fluctuation Theory of Metallic Magnetism


Book Description

This book presents a theoretical framework for magnetism in ferromagnetic metals and alloys at finite temperatures. The objective of the book is twofold. First, it gives a detailed presentation of the dynamic spin-fluctuation theory that takes into account both local and long-wave spin fluctuations with any frequency. The authors provide a detailed explanation of the fundamental role of quantum spin fluctuations in the mechanism of metallic magnetism and illustrate the theory with concrete examples. The second objective of the book is to give an accurate and self-contained presentation of many-body techniques such as the functional integral method and Green's functions, via a number of worked examples. These computational methods are of great use to solid state physicists working in a range of specialties. The book is intended primarily for researchers, but can also be used as textbook. The introductory chapters offer clear and complete derivations of the fundamentals, which makes the presentation self-contained. The main text is followed by a number of well-organized appendices that contain a detailed presentation of the necessary many-body techniques and computational methods. The book also includes a list of symbols and detailed index. This volume will be of interest to a wide range of physicists interested in magnetism and solid state physics in general, both theoreticians and experimentalists.




Magnetism and Magnetic Materials V


Book Description

Selected, peer reviewed papers from the Fifth Moscow International Symposium on Magnetism (MISM 2011), Lomonosov Moscow State University, Moscow, Russia, August 21-25, 2011




Achievements in Magnetism


Book Description

Selected, peer reviewed papers from the 6th Moscow International Symposium on Magnetism (MISM), June 29-July 3, 2014, Moscow, Russian Federation




Modern Theory of Magnetism in Metals and Alloys


Book Description

This book describes theoretical aspects of the metallic magnetism from metals to disordered alloys to amorphous alloys both at the ground state and at finite temperatures. The book gives an introduction to the metallic magnetism, and treats effects of electron correlations on magnetism, spin fluctuations in metallic magnetism, formation of complex magnetic structures, a variety of magnetism due to configurational disorder in alloys as well as a new magnetism caused by the structural disorder in amorphous alloys, especially the itinerant-electron spin glasses. The readers will find that all these topics can be understood systematically by means of the spin-fluctuation theories based on the functional integral method.




Local Probing of a Superconductor’s Quasiparticles and Bosonic Excitations with a Scanning Tunnelling Microscope


Book Description

Complementary to scattering techniques, scanning tunnelling microscopy provides atomic-scale real space information about a material's electronic state of matter. State-of-the-art designs of a scanning tunnelling microscope (STM) allow measurements at millikelvin temperatures with unprecedented energy resolution. Therefore, this instrument excels in probing the superconducting state at low temperatures and especially its local quasiparticle excitations as well as bosonic degrees of freedom.




Dynamics of Magnetic Fluctuations in High-Temperature Superconductors


Book Description

This NATO Advanced Research Workshop was held at a time when there was little consensus as to the mechanism for high temperature superconductivity, in the context of a world undergoing major changes in its political alignments and sense of the possibility for the future. It was characterized by generosity in the sharing of our uncertainties and speculations, as was appropriate for both the subject matter and the context. The workshop was organized, of necessity around the experimental work, as is this volume. Where the theoretical work is directly relevant to particular experiments, it is included in the appropriate sections with them. Most of the participants felt strongly that magnetic fluctuations played an important role in the mechanism for high T c, although with the exception of the IlS R work reported by Luke showing results inconsistent with the anyon picture, and the work on flux phases by Lederer, the mechanism remained an issue in the background. A major focus was the phenomenological interpretation of the NMR data.




Magnetism in the Solid State


Book Description

This book presents a phenomenological approach to the field of solid state magnetism. It surveys the various theories and discusses their applicability in different types of materials. The text will be valuable as a text for graduate courses in magnetism and magnetic materials.




Itinerant Electron Magnetism: Fluctuation Effects


Book Description

A summary of recent developments in theoretical and experimental studies of fluctuation effects in itinerant electron magnets, focusing on novel physical phenomena: soft-mode spin fluctuations and zero-point effects, strong spin anharmonicity, magnetic frustrations in metals, fluctuation effects in Invar alloys and low-dimensional systems. All of these may be important for novel high-technology applications.




High-Temperature Cuprate Superconductors


Book Description

High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their knowledge of this remarkable class of materials.




Spin Fluctuations in Itinerant Electron Magnetism


Book Description

Ferromagnetism of metallic systems, especially those including transition metals, has been a controversial subject of modern science for a long time. This controversy sterns from the apparent dual character of the d-electrons responsible for magnetism in transition metals, i.e., they are itinerant elec trons described by band theory in their ground state, while at finite tem peratures they show various properties that have long been attributed to a system consisting of local magnetic moments. The most familiar example of these properties is the Curie-Weiss law of magnetic susceptibility obeyed by almost all ferromagnets above their Curie temperatures. At first the problem seemed to be centered around whether the d-elec trons themselves are localized or itinerant. This question was settled in the 1950s and early 1960s by various experimental investigations, in particular by observations of d-electron Fermi surfaces in ferromagnetic transition metals. These observations are generally consistent with the results of band calculations. Theoretical investigations since then have concentrated on explaining this dual character of d-electron systems, taking account of the effects of electron-electron correlations in the itinerant electron model. The problem in physical terms is to study the spin density fluctuati·ons, which are ne glected in the mean-field or one-electron theory, and their influence on the physical properties.