Dynamic Stability of Suddenly Loaded Structures


Book Description

Dynamic instability or dynamic buckling as applied to structures is a term that has been used to describe many classes of problems and many physical phenomena. It is not surprising, then, that the term finds several uses and interpretations among structural mechanicians. Problems of parametric resonance, follower-force, whirling of rotating shafts, fluid-solid interaction, general response of structures to dynamic loads, and several others are all classified under dynamic instability. Many analytical and experimental studies of such problems can be found in several books as either specialized topics or the main theme. Two such classes, parametric resonance and stability of nonconservative systems under static loads (follower-force problems), form the main theme of two books by V. V. Bolotin, which have been translated from Russian. Moreover, treatment of aero elastic instabilities can be found in several textbooks. Finally, analytical and experimental studies of structural elements and systems subjected to intense loads (of very short duration) are the focus of the recent monograph by Lindberg and Florence. The first chapter attempts to classify the various "dynamic instability" phenomena by taking into consideration the nature of the cause, the character of the response, and the history of the problem. Moreover, the various concepts and methodologies as developed and used by the various investigators for estimating critical conditions for suddenly loaded elastic systems are fully described. Chapter 2 demonstrates the concepts and criteria for dynamic stability through simple mechanical models with one and two degrees of freedom.




Dynamic Stability of Structures


Book Description

This book explores the theory of parametric stability of structures under deterministic and stochastic loadings.




Dynamic Stability of Structures


Book Description

Dynamic Stability of Structures covers the proceedings of an International Conference on Dynamic Stability of Structures, held in Northwestern University, Evanston, Illinois on October 18-20, 1965, jointly sponsored by the Air Force of Scientific Research and Northwestern University. The conference aims to delineate the various categories of dynamic stability phenomena. This book is organized into six sections encompassing 20 chapters that tackle general topics such as mathematical methods of analysis, physical phenomena, design applications in engineering, and reports of field research. The first two sections deal with the fundamentals, principles, and concept of dynamic stability, as well as an introduction to the use of computing machines as an aid in studying the motions of complicated dynamical systems. The succeeding two sections highlight the statistical aspects in the structural stability theory and certain problems of structural dynamic. These sections also look into the dynamic buckling of elastic structures and the buckling of long slender ships due to wave-induced whipping. The last two sections explore the stability and vibration problems of mechanical systems under harmonic excitation and the dynamic buckling under step loading. These sections also include discussions on the nonlinear dynamic response of shell-type structures and of a column under random loading, as well as Italian research in the field. Structural and mechanical engineers will find this book invaluable.




Fundamentals of Structural Stability


Book Description

An understanable introduction to the theory of structural stability, useful for a wide variety of engineering disciplines, including mechanical, civil and aerospace.




Dynamic Stability of Structures


Book Description

This report deals primarily with extension of the energy-based concepts of dynamic stability, developed earlier for finite-degree-of-freedom systems, to continuous systems. Moreover, the related criteria for dynamic stability are demonstrated through several structural configurations, such as eccentrically loaded simple two-bar frames, geometrically imperfect, thin, cylindrical shells (of stiffened and unstiffened construction) and subjected to uniform axial compression and lateral pressure, and a pinnted, half-sine, shallow arch loaded transversely. All of these systems are subject to violent buckling under static application of the loads. Moreover, the developed concepts are extended, so as to apply to structural systems, which are either subject to smooth buckling or are not subject to buckling at all under static loading.




Stability of Structures


Book Description

A crucial element of structural and continuum mechanics, stability theory has limitless applications in civil, mechanical, aerospace, naval and nuclear engineering. This text of unparalleled scope presents a comprehensive exposition of the principles and applications of stability analysis. It has been proven as a text for introductory courses and various advanced courses for graduate students. It is also prized as an exhaustive reference for engineers and researchers. The authors' focus on understanding of the basic principles rather than excessive detailed solutions, and their treatment of each subject proceed from simple examples to general concepts and rigorous formulations. All the results are derived using as simple mathematics as possible. Numerous examples are given and 700 exercise problems help in attaining a firm grasp of this central aspect of solid mechanics. The book is an unabridged republication of the 1991 edition by Oxford University Press and the 2003 edition by Dover, updated with 18 pages of end notes.




Fundamentals of Structural Mechanics, Dynamics, and Stability


Book Description

Presents the material from general theory and fundamentals through to practical applications. Explains the finite element method for elastic bodies, trusses, frames, non-linear behavior of materials, and more. Includes numerous practical worked examples and case studies throughout each chapter.




Nonlinear Analysis of Thin-Walled Structures


Book Description

Mechanical engineering, an engineering discipline born of the needs of the Industrial Revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face the profound issues of productivity and competitiveness that require engineering solutions, among others. The Mechanical Engineering Series is a new series, featuring graduate texts and research monographs, intended to address the need for information in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that will cover a broad range of concentrations important to mechanical engineering graduate education and research. We are fortunate to have a distinguished roster of consulting editors, each an expert in one of the areas of concentration. The names of the consult ing editors are listed on page vi. The areas of concentration are applied mechanics, biomechanics, computational mechanics, dynamic systems and control, energetics, mechanics of materials, processing, thermal science, and tribology. We are pleased to present Nonlinear Analysis of Thin-Walled Structures by James F. Doyle. Austin, Texas Frederick F. Ling Preface This book is concerned with the challenging subject of the nonlinear static, dynamic, and stability analyses of thin-walled structures. It carries on from where Static and Dynamic Analysis of Structures, published by Kluwer 1991, left off; that book concentrated on frames and linear analysis, while the present book is focused on plated structures, nonlinear analysis, and a greater emphasis on stability analysis.




Stability Theory and Its Applications to Structural Mechanics


Book Description

An integration of modern work in structural stability theory, this volume focuses on the Koiter postbuckling analyses, with mathematical notions of stability of motion. In relation to discrete and continuous systems, it bases the minimum energy principles for static stability upon the dynamic concepts of stability of motion. It further develops the asymptotic buckling and postbuckling analyses from potential energy considerations, with applications to columns, plates, and arches.




Stability of Structures


Book Description

The current trend of building more streamlined structures has made stability analysis a subject of extreme importance. It is mostly a safety issue because Stability loss could result in an unimaginable catastrophe. Written by two authors with a combined 80 years of professional and academic experience, the objective of Stability of Structures: Principles and Applications is to provide engineers and architects with a firm grasp of the fundamentals and principles that are essential to performing effective stability analysts. Concise and readable, this guide presents stability analysis within the context of elementary nonlinear flexural analysis, providing a strong foundation for incorporating theory into everyday practice. The first chapter introduces the buckling of columns. It begins with the linear elastic theory and proceeds to include the effects of large deformations and inelastic behavior. In Chapter 2 various approximate methods are illustrated along with the fundamentals of energy methods. The chapter concludes by introducing several special topics, some advanced, that are useful in understanding the physical resistance mechanisms and consistent and rigorous mathematical analysis. Chapters 3 and 4 cover buckling of beam-columns. Chapter 5 presents torsion in structures in some detail, which is one of the least well understood subjects in the entire spectrum of structural mechanics. Strictly speaking, torsion itself does not belong to a topic in structural stability, but needs to be covered to some extent for a better understanding of buckling accompanied with torsional behavior. Chapters 6 and 7 consider stability of framed structures in conjunction with torsional behavior of structures. Chapters 8 to 10 consider buckling of plate elements, cylindrical shells, and general shells. Although the book is primarily devoted to analysis, rudimentary design aspects are discussed. - Balanced presentation for both theory and practice - Well-blended contents covering elementary to advanced topics - Detailed presentation of the development