Next Generation of Bridge Columns for Accelerated Bridge Construction in High Seismic Zones


Book Description

Longitudinal bar debonding allowed spread of yielding and prevented premature failure of reinforcements in UHPC-filled duct connections and grouted coupler column pedestal. The SMA-reinforced ECC column showed superior seismic performance compared to a conventional column in which the plastic hinge damage was limited to only ECC cover spalling even under 12% drift ratio cycles. The column residual displacements were 79% lower than CIP residual displacements on average due to the superelastic NiTi SMA longitudinal reinforcement, and higher base shear capacity and higher displacement capacity were observed. The analytical modeling methods were simple and sufficiently accurate for general design and analyses of precast components proposed in the present study. The proposed symmetrical material model for reinforcing NiTi superelastic SMA was found to be a viable alternative to the more complex asymmetrical model.







Bridge Maintenance, Safety, Management and Life-Cycle Optimization


Book Description

Bridge Maintenance, Safety, Management and Life-Cycle Optimization contains the lectures and papers presented at IABMAS 2010, the Fifth International Conference of the International Association for Bridge Maintenance and Safety (IABMAS), held in Philadelphia, Pennsylvania, USA from July 11 through 15, 2010.All major aspects of bridge maintenance, s




Composites for Construction


Book Description

The first textbook on the design of FRP for structural engineering applications Composites for Construction is a one-of-a-kind guide to understanding fiber-reinforced polymers (FRP) and designing and retrofitting structures with FRP. Written and organized like traditional textbooks on steel, concrete, and wood design, it demystifies FRP composites and demonstrates how both new and retrofit construction projects can especially benefit from these materials, such as offshore and waterfront structures, bridges, parking garages, cooling towers, and industrial buildings. The code-based design guidelines featured in this book allow for demonstrated applications to immediately be implemented in the real world. Covered codes and design guidelines include ACI 440, ASCE Structural Plastics Design Manual, EUROCOMP Design Code, AASHTO Specifications, and manufacturer-published design guides. Procedures are provided to the structural designer on how to use this combination of code-like documents to design with FRP profiles. In four convenient sections, Composites for Construction covers: * An introduction to FRP applications, products and properties, and to the methods of obtaining the characteristic properties of FRP materials for use in structural design * The design of concrete structural members reinforced with FRP reinforcing bars * Design of FRP strengthening systems such as strips, sheets, and fabrics for upgrading the strength and ductility of reinforced concrete structural members * The design of trusses and frames made entirely of FRP structural profiles produced by the pultrusion process




Seismic Design, Assessment and Retrofitting of Concrete Buildings


Book Description

Reflecting the historic first European seismic code, this professional book focuses on seismic design, assessment and retrofitting of concrete buildings, with thorough reference to, and application of, EN-Eurocode 8. Following the publication of EN-Eurocode 8 in 2004-05, 30 countries are now introducing this European standard for seismic design, for application in parallel with existing national standards (till March 2010) and exclusively after that. Eurocode 8 is also expected to influence standards in countries outside Europe, or at the least, to be applied there for important facilities. Owing to the increasing awareness of the threat posed by existing buildings substandard and deficient buildings and the lack of national or international standards for assessment and retrofitting, its impact in that field is expected to be major. Written by the lead person in the development of the EN-Eurocode 8, the present handbook explains the principles and rationale of seismic design according to modern codes and provides thorough guidance for the conceptual seismic design of concrete buildings and their foundations. It examines the experimental behaviour of concrete members under cyclic loading and modelling for design and analysis purposes; it develops the essentials of linear or nonlinear seismic analysis for the purposes of design, assessment and retrofitting (especially using Eurocode 8); and gives detailed guidance for modelling concrete buildings at the member and at the system level. Moreover, readers gain access to overviews of provisions of Eurocode 8, plus an understanding for them on the basis of the simple models of the element behaviour presented in the book. Also examined are the modern trends in performance- and displacement-based seismic assessment of existing buildings, comparing the relevant provisions of Eurocode 8 with those of new US prestandards, and details of the most common and popular seismic retrofitting techniques for concrete buildings and guidance for retrofitting strategies at the system level. Comprehensive walk-through examples of detailed design elucidate the application of Eurocode 8 to common situations in practical design. Examples and case studies of seismic assessment and retrofitting of a few real buildings are also presented. From the reviews: "This is a massive book that has no equal in the published literature, as far as the reviewer knows. It is dense and comprehensive and leaves nothing to chance. It is certainly taxing on the reader and the potential user, but without it, use of Eurocode 8 will be that much more difficult. In short, this is a must-read book for researchers and practitioners in Europe, and of use to readers outside of Europe too. This book will remain an indispensable backup to Eurocode 8 and its existing Designers’ Guide to EN 1998-1 and EN 1998-5 (published in 2005), for many years to come. Congratulations to the author for a very well planned scope and contents, and for a flawless execution of the plan". AMR S. ELNASHAI "The book is an impressive source of information to understand the response of reinforced concrete buildings under seismic loads with the ultimate goal of presenting and explaining the state of the art of seismic design. Underlying the contents of the book is the in-depth knowledge of the author in this field and in particular his extremely important contribution to the development of the European Design Standard EN 1998 - Eurocode 8: Design of structures for earthquake resistance. However, although Eurocode 8 is at the core of the book, many comparisons are made to other design practices, namely from the US and from Japan, thus enriching the contents and interest of the book". EDUARDO C. CARVALHO







10th International Conference on FRP Composites in Civil Engineering


Book Description

This volume highlights the latest advances, innovations, and applications in the field of FRP composites and structures, as presented by leading international researchers and engineers at the 10th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE), held in Istanbul, Turkey on December 8-10, 2021. It covers a diverse range of topics such as All FRP structures; Bond and interfacial stresses; Concrete-filled FRP tubular members; Concrete structures reinforced or pre-stressed with FRP; Confinement; Design issues/guidelines; Durability and long-term performance; Fire, impact and blast loading; FRP as internal reinforcement; Hybrid structures of FRP and other materials; Materials and products; Seismic retrofit of structures; Strengthening of concrete, steel, masonry and timber structures; and Testing. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.




Design of FRP and Steel Plated RC Structures


Book Description

There are a large and ever-increasing number of structures and buildings worldwide that are in need of refurbishment, rehabilitation and strengthening. The retrofitting of beams and slabs for this purpose is now recognized as the most cost-effective and environmentally sustainable method of carrying out this essential renovation work. The authors of Design of FRP and Steel Plated RC Structures are both acknowledged world experts on these techniques and their book has been designed to provide the reader with a comprehensive overview of the established techniques and their applications as well as thorough coverage of newly emerging methodologies and their uses. The comparison of FRP and steel is a particular focus and the authors provide practical examples of where one material might be used in preference to another. Indeed practical, worked examples of how, when, and why specific solutions have been chosen in real-world situations are used throughout the text and provide the user with invaluable insights into the decision-making process and its technical background. Just as importantly these examples make the understanding and application of these techniques easier to understand for the student and the practitioner. The book is international in appeal, as while no reference is made to specific local codes the authors' approach always follows that of the more advanced structural codes worldwide. As such it will remain an essential resource for many years to come. Design of FRP and Steel Plated RC Structures is an important reference for a broad range of researchers, students and practitioners including civil engineers and contractors, architects, designers and builders. - Contains detailed worked examples throughout to aid understanding and provide technical insight - Covers all types of metal plates and all types of FRP plates - Uses design philosophies that can be used with any mathematical model - Provides coverage of all main international guidelines




Insights and Innovations in Structural Engineering, Mechanics and Computation


Book Description

Insights and Innovations in Structural Engineering, Mechanics and Computation comprises 360 papers that were presented at the Sixth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2016, Cape Town, South Africa, 5-7 September 2016). The papers reflect the broad scope of the SEMC conferences, and cover a wide range of engineering structures (buildings, bridges, towers, roofs, foundations, offshore structures, tunnels, dams, vessels, vehicles and machinery) and engineering materials (steel, aluminium, concrete, masonry, timber, glass, polymers, composites, laminates, smart materials).