Electroweak Symmetry Breaking - Proceedings Of The International Workshop


Book Description

The papers presented here focus on new developments in both theoretical and phenomenological aspects of standard theory, with an emphasis on understanding of the mechanism of electroweak symmetry breaking. This workshop covers the formal aspects and the related new models of electroweak symmetry breaking and the present status of the Standard Model.




Dynamical Symmetry Breaking In Quantum Field Theories


Book Description

The phenomenon of dynamical symmetry breaking (DSB) in quantum field theory is discussed in a detailed and comprehensive way. The deep connection between this phenomenon in condensed matter physics and particle physics is emphasized. The realizations of DSB in such realistic theories as quantum chromodynamics and electroweak theory are considered. Issues intimately connected with DSB such as critical phenomenona and effective lagrangian approach are also discussed.




Dynamical Symmetry Breaking - Proceedings Of The 1991 Nagoya Spring School


Book Description

This is the first systematic volume which presents a detailed introduction to every facet of the modern version of Dynamical Symmetry Breaking which has been rapidly developed in recent years. Most of the lectures are given by pioneers in this new field and are geared mainly to the level of second year graduate students.




Modern Perspectives in Lattice QCD: Quantum Field Theory and High Performance Computing


Book Description

The aim of the book is to familiarize the new generation of PhD students and postdoctoral fellows with the principles and methods of modern lattice field theory, which aims to resolve fundamental, non-perturbative questions about QCD without uncontrolled approximations.




Strong Coupling Gauge Theories In Lhc Era - Proceedings Of The Workshop In Honor Of Toshihide Maskawa's 70th Birthday And 35th Anniversary Of Dynamical Symmetry Breaking In Scgt


Book Description

The purpose of the Workshop is to have intensive discussions on both theoretical and phenomenological aspects of strong coupling gauge theories (SCGTs), with particular emphasis on the model buildings to be tested in the LHC experiments. Dynamical issues are discussed in lattice simulations and various analytical methods. This proceedings volume is a collection of the presentations made at the Workshop by many leading scientists in the field.




Quest For The Origin Of Particles And The Universe - Proceedings Of The Kmi Inauguration Conference


Book Description

The Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI) was founded at Nagoya University in 2010 under the directorship of T Maskawa, in celebration of the 2008 Nobel Prize in Physics for M Kobayashi and T Maskawa, both who are alumni of Nagoya University. In commemoration of the new KMI building in 2011, the KMI Inauguration Conference (KMIIN) was organized to discuss perspectives of various fields — both theoretical and experimental studies of particle physics and astrophysics — as the main objectives of the KMI activity.This proceedings contains a welcome address by T Maskawa conveying his hopes for KMI to create new revolutionary directions in the spirit of Shoichi Sakata, a great mentor of both Maskawa and Kobayashi. Invited speakers, world-leading scientists in the fields, and the young scientists at KMI contributed to this volume containing theoretical studies of strongly coupled gauge theories in view of LHC phenomenology, string theory approach and lattice studies as well as hot/dense QCD system, and also super-symmetric GUT models, etc., together with experimental studies of LHC physics, B physics, neutrino physics and the related astrophysics and cosmology. The volume yields a unique synergy of particle physics and astrophysics, closely related to the main activity of KMI encompassing particle theory (including lattice computer simulations), particle physics experiments, cosmology, and astrophysics observations.




Strong Coupling Gauge Theories in LHC Era


Book Description

The purpose of the Workshop is to have intensive discussions on both theoretical and phenomenological aspects of strong coupling gauge theories (SCGTs), with particular emphasis on the model buildings to be tested in the LHC experiments. Dynamical issues are discussed in lattice simulations and various analytical methods. This proceedings volume is a collection of the presentations made at the Workshop by many leading scientists in the field.




Strong Coupling Gauge Theories and Effective Field Theories


Book Description

This volume presents the important recent progress in both theoretical and phenomenological issues of strong coupling gauge theories, with/without supersymmetry and extra dimensions, etc. Emphasis is placed on dynamical symmetry breaking with large anomalous dimensions governed by the dynamics near the nontrivial fixed point. Also presented are recent developments of the corresponding effective field theories, such as those including light spectra other than the NambuOCoGoldstone particles. This book is a must for all those who are interested in dynamical symmetry breaking and effective field theories in a modern version. Contents: Light-Front Quantization of Gauge Theories (S J Brodsky); Significance of the Renormalization Constant of the Color Gauge Field (K Nishijima & M Chaichian); Mass Gap and Color Confinement in YangOCoMills Theory Based on Asymptotic Solutions of SD Equation (K-I Kondo); Strong Coupling Approach to Transverse Lattice QCD (S Dalley); Vector Manifestation of Chiral Symmetry (M Harada); Locking Internal and Space-Symmetries: Relativistic Vector Condensation (F Sannino); A Practical Gauge Invariant Construction of Abelian Chiral Gauge Theories on the Lattice (Y Kikukawa); Neutrino Masses in Theories with Dynamical Breaking of Electroweak and Extended Gauge Symmetries (T Appelquist & R Schrock); Dynamical Electroweak Symmetry Breaking from Extra Dimensions (M Hashimoto et al.); Classical Solutions of Field Equations in Randall Sundrum Brane Worlds (D Karasik et al.); Flavor Constraints on Theory Space (E H Simmons et al.); Neutrino Mass Matrix in Terms of Up-Quark Masses (M Bando & M Obara); and other papers. Readership: Graduate students and researchers in high energy physics, particularly those interested in dynamical symmetry breaking and effective field theories."




Electroweak Symmetry Breaking


Book Description

With this thesis the author contributes to the development of a non-mainstream but long-standing approach to electroweak symmetry breaking based on an analogy with superconductivity. Electroweak symmetry breaking is assumed to be caused by dynamically generated masses of typical fermions, i.e., of quarks and leptons, which in turn assumes a new dynamics between quarks and leptons. Primarily it is designed to generate fermion masses and electroweak symmetry breaking is an automatic consequence. After the summary of the topic, the first main part of the thesis addresses the question as to whether the masses of known quarks and leptons provide sufficiently strong sources of electroweak symmetry breaking. It is demonstrated that neutrino masses subject to the seesaw mechanism are indispensable ingredients. The other two parts of the thesis are dedicated to the presentation of two particular models: The first model is based on the new strong Yukawa dynamics and serves as a platform for studying the ability to reproduce fermion masses. The second, more realistic model introduces a flavor gauge dynamics and its phenomenological consequences are studied. Even though, in the past, this type of models has already been of some interest, following the discovery of the Standard-Model-like Higgs particle, it is regaining its relevance.




Origin Of Mass And Strong Coupling Gauge Theories (Scgt 15) - Proceedings Of The Sakata Memorial Kmi Workshop


Book Description

This volume contains contributions to the workshop, which was largely focused on the strong coupling gauge theories in search for theories beyond the standard model, particularly, the LHC experiments and lattice studies of conformal fixed point. The main topics include walking technicolor and the role of conformality in view of the 125 GeV Higgs as a light composite Higgs (technidilaton, and other composite Higgs, etc.). Nonperturbative studies like lattice simulations and stringy/holographic approaches are extensively discussed in close relation to the phenomenological studies.After the discovery of 125 GeV Higgs at LHC, the central issue of particle physics is now to reveal the dynamical origin of the Higgs itself. One of the possibilities would be the composite Higgs based on the strong coupling gauge theory in the TeV region, such as the technidilaton predicted in walking technicolor with infrared conformality. The volume contains, among others, many of the latest important reports on walking technicolor and related subjects in the general context of conformality, in a way of direct relevance to the LHC phenomenology as well as the lattice studies. It is very timely to study full theoretical implications in the exciting era when the LHC is vigorously working. This volume is of great importance for that purpose.Speakers of 40 talks (plus posters) include K-I Aoki, Y Aoki, K Bamba, E Bennett, R S Chivukula, H Georgi, A Hasenfratz, D-K Hong, K Itoh, D Elander, G Fleming, H Fukano, Y Iwasaki, M Jarvinen, D Kadoh, S Kim, R Kitano, K-I Kondo, J Kuti, D Lin, N Maru, H Matsufuru, S Matsuzaki, K-I Nagai, C Nonaka, H Ohki, E Pallante, M Rho, E Rinaldi, F Sannino, D Schaich, A Shibata, R E Shrock, E H Simmons, K Tuominen, C H Wong, N Yamada, M J S Yang, and K Yamawaki.