Dynamical Symmetry Breaking In Quantum Field Theories


Book Description

The phenomenon of dynamical symmetry breaking (DSB) in quantum field theory is discussed in a detailed and comprehensive way. The deep connection between this phenomenon in condensed matter physics and particle physics is emphasized. The realizations of DSB in such realistic theories as quantum chromodynamics and electroweak theory are considered. Issues intimately connected with DSB such as critical phenomenona and effective lagrangian approach are also discussed.




Dynamical Symmetry Breaking - Proceedings Of The 1991 Nagoya Spring School


Book Description

This is the first systematic volume which presents a detailed introduction to every facet of the modern version of Dynamical Symmetry Breaking which has been rapidly developed in recent years. Most of the lectures are given by pioneers in this new field and are geared mainly to the level of second year graduate students.




Dynamical Gauge Symmetry Breaking


Book Description

This book is a collection of original papers on dynamical gauge symmetry breaking, and is intended for graduate students and researchers in theoretical physics (elementary particle physics and others) who have an understanding of basic quantum field theory. The book can serve as a research text for those requiring an introduction to dynamical gauge symmetry breaking and as a reference text for active researchers. The important papers in the field that are included deal with attempts to apply the ideas to realistic models of elementary particle interactions. A historical critique by the editors provides an introductory review.




Electroweak Symmetry Breaking And New Physics At The Tev Scale


Book Description

This is an expanded version of the report by the Electroweak Symmetry Breaking and Beyond the Standard Model Working Group which was contributed to Particle Physics — Perspectives and Opportunities, a report of the Division of Particles and Fields Committee for Long Term Planning. One of the Working Group's primary goals was to study the phenomenology of electroweak symmetry breaking and attempt to quantify the “physics reach” of present and future colliders. Their investigations encompassed the Standard Model — with one doublet of Higgs scalars — and approaches to physics beyond the Standard Model. These include models of low-energy supersymmetry, dynamical electroweak symmetry breaking, and a variety of extensions of the Standard Model with new particles and interactions. The Working Group also considered signals of new physics in precision measurements arising from virtual processes and examined experimental issues associated with the study of electroweak symmetry breaking and the search for new physics at present and future hadron and lepton colliders.This volume represents an important contribution to the efforts being made to advance the frontiers of particle physics.




Linear Collider Physics in the New Millennium


Book Description

The high energy electron-positron linear collider is expected to provide crucial clues to many of the fundamental questions of our time: What is the nature of electroweak symmetry breaking? Does a Standard Model Higgs boson exist, or does nature take the route of supersymmetry, technicolor or extra dimensions, or none of the foregoing? This invaluable book is a collection of articles written by experts on many of the most important topics which the linear collider will focus on. It is aimed primarily at graduate students but will undoubtedly be useful also to any active researcher on the physics of the next generation linear collider.




Springer Handbook of Spacetime


Book Description

The Springer Handbook of Spacetime is dedicated to the ground-breaking paradigm shifts embodied in the two relativity theories, and describes in detail the profound reshaping of physical sciences they ushered in. It includes in a single volume chapters on foundations, on the underlying mathematics, on physical and astrophysical implications, experimental evidence and cosmological predictions, as well as chapters on efforts to unify general relativity and quantum physics. The Handbook can be used as a desk reference by researchers in a wide variety of fields, not only by specialists in relativity but also by researchers in related areas that either grew out of, or are deeply influenced by, the two relativity theories: cosmology, astronomy and astrophysics, high energy physics, quantum field theory, mathematics, and philosophy of science. It should also serve as a valuable resource for graduate students and young researchers entering these areas, and for instructors who teach courses on these subjects. The Handbook is divided into six parts. Part A: Introduction to Spacetime Structure. Part B: Foundational Issues. Part C: Spacetime Structure and Mathematics. Part D: Confronting Relativity theories with observations. Part E: General relativity and the universe. Part F: Spacetime beyond Einstein.




The Origin of Mass and Strong Coupling Gauge Theories


Book Description

This volume includes discussion on new dynamical features in the light of (deconstruted/latticized) extra dimensions, holographic QCD, Moose/hidden local symmetry, and so on. New insights into the QCD as a prototype of strong coupling gauge theories as well as in its own right, particularly in hot and dense matter are included.




Quarks '92 - Proceedings Of The 7th International Seminar


Book Description

The strongest part of this volume is the treatment of nonperturbative field theory with implications for baryon number violation at high energies and cosmology. Also, the volume contains some fresh results concerning anyons, lattice field theory, perturbative field theory and astrophysics.




Gauge Theories of the Strong, Weak, and Electromagnetic Interactions


Book Description

A thoroughly revised edition of a landmark textbook on gauge theories and their applications to particle physics This completely revised and updated graduate-level textbook is an ideal introduction to gauge theories and their applications to high-energy particle physics, and takes an in-depth look at two new laws of nature—quantum chromodynamics and the electroweak theory. From quantum electrodynamics through unified theories of the interactions among leptons and quarks, Chris Quigg examines the logic and structure behind gauge theories and the experimental underpinnings of today's theories. Quigg emphasizes how we know what we know, and in the era of the Large Hadron Collider, his insightful survey of the standard model and the next great questions for particle physics makes for compelling reading. The brand-new edition shows how the electroweak theory developed in conversation with experiment. Featuring a wide-ranging treatment of electroweak symmetry breaking, the physics of the Higgs boson, and the importance of the 1-TeV scale, the book moves beyond established knowledge and investigates the path toward unified theories of strong, weak, and electromagnetic interactions. Explicit calculations and diverse exercises allow readers to derive the consequences of these theories. Extensive annotated bibliographies accompany each chapter, amplify points of conceptual or technical interest, introduce further applications, and lead readers to the research literature. Students and seasoned practitioners will profit from the text's current insights, and specialists wishing to understand gauge theories will find the book an ideal reference for self-study. Brand-new edition of a landmark text introducing gauge theories Consistent attention to how we know what we know Explicit calculations develop concepts and engage with experiment Interesting and diverse problems sharpen skills and ideas Extensive annotated bibliographies




The Proceedings of the International Symposium on Nuclear Electro-Weak Spectroscopy for Symmetries in Electro-Weak Nuclear-Processes


Book Description

The NEWS99 international symposium discusses symmetries in electroweak processes in nuclei. Many phenomena in nuclear and particle physics are related to symmetry. It is known that we are living in a left-handed world as far as the Weak interaction is concerned, but neutrino physics suggests that a right-handed world may also be relevant. Chiral symmetry and its breaking plays an essential role in generating hadron masses. Symmetries related to flavor in the strong interaction like isospin, SU(3) and so on are known to be violated although they play a crucial role for the understanding of phenomena in nuclear and particle physics. The treatment of tiny breaking is of particular importance. Weak and electromagnetic interactions are well established at the fundamental level and can be used to probe the structure of nuclei and hadrons. A wide variety of phenomena in nuclear and particle physics were discussed in NEWS99 with an emphasis on symmetry. Topics ranged from nuclear structure to neutrino properties,,covering highly phenomenological to fundamental fields.