Dynamical Systems on Surfaces


Book Description

These notes are an elaboration of the first part of a course on foliations which I have given at Strasbourg in 1976 and at Tunis in 1977. They are concerned mostly with dynamical sys tems in dimensions one and two, in particular with a view to their applications to foliated manifolds. An important chapter, however, is missing, which would have been dealing with structural stability. The publication of the French edition was re alized by-the efforts of the secretariat and the printing office of the Department of Mathematics of Strasbourg. I am deeply grateful to all those who contributed, in particular to Mme. Lambert for typing the manuscript, and to Messrs. Bodo and Christ for its reproduction. Strasbourg, January 1979. Table of Contents I. VECTOR FIELDS ON MANIFOLDS 1. Integration of vector fields. 1 2. General theory of orbits. 13 3. Irlvariant and minimaI sets. 18 4. Limit sets. 21 5. Direction fields. 27 A. Vector fields and isotopies. 34 II. THE LOCAL BEHAVIOUR OF VECTOR FIELDS 39 1. Stability and conjugation. 39 2. Linear differential equations. 44 3. Linear differential equations with constant coefficients. 47 4. Linear differential equations with periodic coefficients. 50 5. Variation field of a vector field. 52 6. Behaviour near a singular point. 57 7. Behaviour near a periodic orbit. 59 A. Conjugation of contractions in R. 67 III. PLANAR VECTOR FIELDS 75 1. Limit sets in the plane. 75 2. Periodic orbits. 82 3. Singular points. 90 4. The Poincare index.




Introduction to the qualitative theory of dynamical systems on surfaces


Book Description

This book is an introduction to the qualitative theory of dynamical systems on manifolds of low dimension (on the circle and on surfaces). Along with classical results, it reflects the most significant achievements in this area obtained in recent times by Russian and foreign mathematicians whose work has not yet appeared in the monographic literature. The main stress here is put on global problems in the qualitative theory of flows on surfaces. Despite the fact that flows on surfaces have the same local structure as flows on the plane, they have many global properties intrinsic to multidimensional systems. This is connected mainly with the existence of nontrivial recurrent trajectories for such flows. The investigation of dynamical sytems on surfaces is therefore a natural stage in the transition to multidimensional dynamical systems. The reader of this book need by familiar only with basic courses indifferential equations and smooth manifolds. All the main definitions and concepts required for understanding the contents are given in the text. The results expounded can be used for investigating mathematical models of mechanical, physical, and other systems (billiards in polygons, the dynamics of a spinning top with nonholonomic constraints, the structure of liquid crystals, etc). The book should be useful not only to mathematicians in all areas, but also to specialists with a mathematical background who are studying dynamical processes: mechanical engineers, physicists, biologists, and so on.




Introduction to the Modern Theory of Dynamical Systems


Book Description

This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.




Studying Complex Surface Dynamical Systems Using Helium-3 Spin-Echo Spectroscopy


Book Description

Chemical reactions and growth processes on surfaces depend on the diffusion and re-orientation of the adsorbate molecules. A fundamental understanding of the forces guiding surface motion is thus of utmost importance for the advancement of many fields of science and technology. To date, our understanding of the principles underlying surface dynamics remains extremely limited, due to the difficulties involved in measuring these processes experimentally. The helium-3 spin-echo (HeSE) technique is uniquely capable of probing such surface dynamical phenomena. The present thesis extends the field of application of HeSE from atomic and small molecular systems to more complex systems. Improvements to the supersonic helium beam source, a key component of the spectrometer, as well as a detailed investigation of a range of five-membered aromatic adsorbate species are presented. The thesis provides a comprehensive description of many aspects of the HeSE method - instrumentation, measurement and data analysis - and as such offers a valuable introduction for newcomers to the field.




A Modern Introduction to Dynamical Systems


Book Description

A senior-level, proof-based undergraduate text in the modern theory of dynamical systems that is abstract enough to satisfy the needs of a pure mathematics audience, yet application heavy and accessible enough to merit good use as an introductory text for non-math majors.




Geometric Theory of Dynamical Systems


Book Description

... cette etude qualitative (des equations difj'erentielles) aura par elle-m me un inter t du premier ordre ... HENRI POINCARE, 1881. We present in this book a view of the Geometric Theory of Dynamical Systems, which is introductory and yet gives the reader an understanding of some of the basic ideas involved in two important topics: structural stability and genericity. This theory has been considered by many mathematicians starting with Poincare, Liapunov and Birkhoff. In recent years some of its general aims were established and it experienced considerable development. More than two decades passed between two important events: the work of Andronov and Pontryagin (1937) introducing the basic concept of structural stability and the articles of Peixoto (1958-1962) proving the density of stable vector fields on surfaces. It was then that Smale enriched the theory substantially by defining as a main objective the search for generic and stable properties and by obtaining results and proposing problems of great relevance in this context. In this same period Hartman and Grobman showed that local stability is a generic property. Soon after this Kupka and Smale successfully attacked the problem for periodic orbits. We intend to give the reader the flavour of this theory by means of many examples and by the systematic proof of the Hartman-Grobman and the Stable Manifold Theorems (Chapter 2), the Kupka-Smale Theorem (Chapter 3) and Peixoto's Theorem (Chapter 4). Several ofthe proofs we give vii Introduction Vlll are simpler than the original ones and are open to important generalizations.




Dynamical Aspects of Teichmüller Theory


Book Description

This book is a remarkable contribution to the literature on dynamical systems and geometry. It consists of a selection of work in current research on Teichmüller dynamics, a field that has continued to develop rapidly in the past decades. After a comprehensive introduction, the author investigates the dynamics of the Teichmüller flow, presenting several self-contained chapters, each addressing a different aspect on the subject. The author includes innovative expositions, all the while solving open problems, constructing examples, and supplementing with illustrations. This book is a rare find in the field with its guidance and support for readers through the complex content of moduli spaces and Teichmüller Theory. The author is an internationally recognized expert in dynamical systems with a talent to explain topics that is rarely found in the field. He has created a text that would benefit specialists in, not only dynamical systems and geometry, but also Lie theory and number theory.




Dynamical Systems on 2- and 3-Manifolds


Book Description

This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed.“br> The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are presented in Part 1 for convenience. The book is accessible to ambitious undergraduates, graduates, and researchers in dynamical systems and low dimensional topology. This volume consists of 10 chapters; each chapter contains its own set of references and a section on further reading. Proofs are presented with the exact statements of the results. In Chapter 10 the authors briefly state the necessary definitions and results from algebra, geometry and topology. When stating ancillary results at the beginning of each part, the authors refer to other sources which are readily available.




Mathematical Modeling of Earth's Dynamical Systems


Book Description

A concise guide to representing complex Earth systems using simple dynamic models Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html




Differential Dynamical Systems, Revised Edition


Book Description

Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.