Handbook of Dynamical Systems


Book Description

Volumes 1A and 1B.These volumes give a comprehensive survey of dynamics written by specialists in the various subfields of dynamical systems. The presentation attains coherence through a major introductory survey by the editors that organizes the entire subject, and by ample cross-references between individual surveys.The volumes are a valuable resource for dynamicists seeking to acquaint themselves with other specialties in the field, and to mathematicians active in other branches of mathematics who wish to learn about contemporary ideas and results dynamics. Assuming only general mathematical knowledge the surveys lead the reader towards the current state of research in dynamics.Volume 1B will appear 2005.




Dynamical Systems


Book Description

Several distinctive aspects make Dynamical Systems unique, including: treating the subject from a mathematical perspective with the proofs of most of the results included providing a careful review of background materials introducing ideas through examples and at a level accessible to a beginning graduate student




Dynamical Systems


Book Description

Lectures: J. Guckenheimer: Bifurcations of dynamical systems.- J. Moser: Various aspects of integrable.- S. Newhouse: Lectures on dynamical systems.- Seminars: A. Chenciner: Hopf bifurcation for invariant tori.- M. Misiurewicz: Horseshoes for continuous mappings of an interval.




Dynamical Systems IX


Book Description

This volume is devoted to the "hyperbolic theory" of dynamical systems (DS), that is, the theory of smooth DS's with hyperbolic behaviour of the tra jectories (generally speaking, not the individual trajectories, but trajectories filling out more or less "significant" subsets in the phase space. Hyperbolicity the property that under a small displacement of any of a trajectory consists in point of it to one side of the trajectory, the change with time of the relative positions of the original and displaced points resulting from the action of the DS is reminiscent of the mot ion next to a saddle. If there are "sufficiently many" such trajectories and the phase space is compact, then although they "tend to diverge from one another" as it were, they "have nowhere to go" and their behaviour acquires a complicated intricate character. (In the physical literature one often talks about "chaos" in such situations. ) This type of be haviour would appear to be the opposite of the more customary and simple type of behaviour characterized by its own kind of stability and regularity of the motions (these words are for the moment not being used as a strict ter 1 minology but rather as descriptive informal terms). The ergodic properties of DS's with hyperbolic behaviour of trajectories (Bunimovich et al. 1985) have already been considered in Volume 2 of this series. In this volume we therefore consider mainly the properties of a topological character (see below 2 for further details).




Handbook of Dynamical Systems


Book Description

In this volume, the authors present a collection of surveys on various aspects of the theory of bifurcations of differentiable dynamical systems and related topics. By selecting these subjects, they focus on those developments from which research will be active in the coming years. The surveys are intended to educate the reader on the recent literature on the following subjects: transversality and generic properties like the various forms of the so-called Kupka-Smale theorem, the Closing Lemma and generic local bifurcations of functions (so-called catastrophe theory) and generic local bifurcations in 1-parameter families of dynamical systems, and notions of structural stability and moduli. - Covers recent literature on various topics related to the theory of bifurcations of differentiable dynamical systems - Highlights developments that are the foundation for future research in this field - Provides material in the form of surveys, which are important tools for introducing the bifurcations of differentiable dynamical systems




Dynamical Systems on 2- and 3-Manifolds


Book Description

This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed.“br> The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are presented in Part 1 for convenience. The book is accessible to ambitious undergraduates, graduates, and researchers in dynamical systems and low dimensional topology. This volume consists of 10 chapters; each chapter contains its own set of references and a section on further reading. Proofs are presented with the exact statements of the results. In Chapter 10 the authors briefly state the necessary definitions and results from algebra, geometry and topology. When stating ancillary results at the beginning of each part, the authors refer to other sources which are readily available.




Introduction to Hamiltonian Dynamical Systems and the N-Body Problem


Book Description

The theory of Hamiltonian systems is a vast subject which can be studied from many different viewpoints. This book develops the basic theory of Hamiltonian differential equations from a dynamical systems point of view. That is, the solutions of the differential equations are thought of as curves in a phase space and it is the geometry of these curves that is the important object of study. The analytic underpinnings of the subject are developed in detail. The last chapter on twist maps has a more geometric flavor. It was written by Glen R. Hall. The main example developed in the text is the classical N-body problem, i.e., the Hamiltonian system of differential equations which describe the motion of N point masses moving under the influence of their mutual gravitational attraction. Many of the general concepts are applied to this example. But this is not a book about the N-body problem for its own sake. The N-body problem is a subject in its own right which would require a sizable volume of its own. Very few of the special results which only apply to the N-body problem are given.




Smooth Dynamical Systems


Book Description

This is a reprint of M C Irwin's beautiful book, first published in 1980. The material covered continues to provide the basis for current research in the mathematics of dynamical systems. The book is essential reading for all who want to master this area.




Dynamical Systems


Book Description

In at least five countries in Latin America, high level research in the field in taking place. To stimulate this development both at home and abroad, Chilean mathematicians have been promoting international meetings like the III International School of Dynamical Systems, which took place at the Universidad de Santiago de Chile-Santiago in 1990. A number of distinguished mathematicians were present at the meeting, side by side with younger people interested in the subject. Several of the participants submitted original contributions to these proceedings of the school. The topics of the papers are central to dynamics: ergodic theory, real and complex foliations, fractal dimensions, polynomial vector fields, hyperbolicity, and expansive maps. Notes on the ergodic theory of plane billiards are also included. This book will be of particular interest to researchers and graduate students working in mathematics, particularly in ordinary differential equations, bifurcation theory, and dynamical systems. Also those working in mathematical physics and physics.




Dynamical Systems


Book Description

Dynamical Systems: An International Symposium, Volume 2 contains the proceedings of the International Symposium on Dynamical Systemsheld at Brown University in Providence, Rhode Island, on August 12-16, 1974. The symposium provided a forum for reviewing the theory of dynamical systems in relation to ordinary and functional differential equations, as well as the influence of this approach and the techniques of ordinary differential equations on research concerning certain types of partial differential equations and evolutionary equations in general. Comprised of six chapters, this volume first examines how the theory of isolating blocks may be applied to the Newtonian planar three-body problem. The reader is then introduced to the separatrix structure for regions attracted to solitary periodic solutions; solitary invariant sets; and singular points and separatrices. Subsequent chapters focus on the equivalence of suspensions and manifolds with cross section; a geometrical approach to classical mechanics; bifurcation theory for odd potential operators; and continuous dependence of fixed points of condensing maps. This monograph will be of interest to students and practitioners in the field of applied mathematics.