Book Description
Publisher Description
Author : André Authier
Publisher : Oxford University Press, USA
Page : 700 pages
File Size : 42,27 MB
Release : 2004
Category : Science
ISBN : 9780198528920
Publisher Description
Author : André Authier
Publisher : Springer Science & Business Media
Page : 419 pages
File Size : 37,24 MB
Release : 2012-12-06
Category : Science
ISBN : 1461558794
This volume collects the proceedings of the 23rd International Course of Crystallography, entitled "X-ray and Neutron Dynamical Diffraction, Theory and Applications," which took place in the fascinating setting of Erice in Sicily, Italy. It was run as a NATO Advanced Studies Institute with A. Authier (France) and S. Lagomarsino (Italy) as codirectors, and L. Riva di Sanseverino and P. Spadon (Italy) as local organizers, R. Colella (USA) and B. K. Tanner (UK) being the two other members of the organizing committee. It was attended by about one hundred participants from twenty four different countries. Two basic theories may be used to describe the diffraction of radiation by crystalline matter. The first one, the so-called geometrical, or kinematical theory, is approximate and is applicable to small, highly imperfect crystals. It is used for the determination of crystal structures and describes the diffraction of powders and polycrystalline materials. The other one, the so-called dynamical theory, is applicable to perfect or nearly perfect crystals. For that reason, dynamical diffraction of X-rays and neutrons constitutes the theoretical basis of a great variety of applications such as: • the techniques used for the characterization of nearly perfect high technology materials, semiconductors, piezoelectric, electrooptic, ferroelectric, magnetic crystals, • the X-ray optical devices used in all modem applications of Synchrotron Radiation (EXAFS, High Resolution X-ray Diffractometry, magnetic and nuclear resonant scattering, topography, etc. ), and • X-ray and neutron interferometry.
Author : Shih-Lin Chang
Publisher : Springer Science & Business Media
Page : 458 pages
File Size : 18,15 MB
Release : 2004-06-24
Category : Science
ISBN : 9783540211969
This comprehensive text describes the fundamentals of X-ray multiple-wave interaction in crystals and its applications in condensed matter physics and crystallography. It covers current theoretical approaches and application methods for many materials, including macromolecular crystals, thin films, semiconductors, quasicrystals and nonlinear optical materials. X-ray optics is also addressed. Designed primarily as a reference for researchers in condensed matter, crystallography, materials science, and synchrotron-related topics, the book will also be useful as a textbook for graduate and senior-year undergraduate courses on special topics in X-ray diffraction.
Author : Z.G. Pinsker
Publisher : Springer
Page : 0 pages
File Size : 33,26 MB
Release : 2012-02-01
Category : Science
ISBN : 9783642812095
(Historical Survey) The discovery of X-ray diffraction in crystals by LAUE, FRIDRICH and KNIPPING in 1912 [1.1] served as the starting pOint for the development of scientific research along a number of important lines. We shall discuss just a few of them. The above discovery convincingly demonstrated the wave properties of X-rays. This, together with the previously established electromagnetic nature of radiation, confirmed the hypothesis that X-rays form the short-wave part of the electromagnetic spectrum. Further, this discovery was the first and decisive experimental proof of the periodic structure of crystals. In fact, theoretical crystallography had already arrived at this conclusion, mainly as an outcome of the theory of the space groups of symmetry elaborated by FEDOROV [1.2] and SCHOENFLIES [1.3]. From the optics of visible light we know that the radiation of a wave length of the same order as, and preferably less than, the period of a grat ing suffers diffraction on periodic objects of the type of optical grating. Thus, the discovery proved that the wavelength of an X-ray must be of the order of interatomic distances. It became clear why the visible light of wavelengths exceeding the crystal lattice periods by about 500 to 1000 times failed to reveal the periodic structure of crystals in diffraction experi ments.
Author : Brian Keith Tanner
Publisher : Pergamon
Page : 192 pages
File Size : 33,86 MB
Release : 1976
Category : Science
ISBN :
X-Ray Diffraction Topography presents an elementary treatment of X-ray topography which is comprehensible to the non-specialist. It discusses the development of the principles and application of the subject matter. X-ray topography is the study of crystals which use x-ray diffraction. Some of the topics covered in the book are the basic dynamical x-ray diffraction theory, the Berg-Barrett method, Lang's method, double crystal methods, the contrast on x-ray topography, and the analysis of crystal defects and distortions. The crystals grown from solution are covered. The naturally occurring cr.
Author : Andrei Benediktovich
Publisher : Springer Science & Business Media
Page : 325 pages
File Size : 43,83 MB
Release : 2013-09-07
Category : Technology & Engineering
ISBN : 3642381774
This book provides a concise survey of modern theoretical concepts of X-ray materials analysis. The principle features of the book are: basics of X-ray scattering, interaction between X-rays and matter and new theoretical concepts of X-ray scattering. The various X-ray techniques are considered in detail: high-resolution X-ray diffraction, X-ray reflectivity, grazing-incidence small-angle X-ray scattering and X-ray residual stress analysis. All the theoretical methods presented use the unified physical approach. This makes the book especially useful for readers learning and performing data analysis with different techniques. The theory is applicable to studies of bulk materials of all kinds, including single crystals and polycrystals as well as to surface studies under grazing incidence. The book appeals to researchers and graduate students alike.
Author : Shih-Lin In-Hang
Publisher : Springer Science & Business Media
Page : 312 pages
File Size : 29,48 MB
Release : 2012-12-06
Category : Science
ISBN : 3642821669
The three-dimensional arrangement of atoms and molecules in crystals and the comparable magnitude of x-ray wavelengths and interatomic distances make it possible for crystals to have more than one set of atomic planes that satisfy Bragg's law and simultaneously diffract an incident x-ray beam - this is the so-called multiple diffraction. This type of diffraction should, in prin ciple, reflect three-dimensional information about the structure of the dif fracting material. Recent progress in understanding this diffraction phenome non and in utilizing this diffraction technique in solid-state and materials sciences reveals the diversity as well as the importance of multiple diffraction of x-rays in application. Unfortunately, there has been no single book written that gives a sys tematic review of this type of diffraction, encompasses its diverse applica tions, and foresees future trends gf development. It is for this purpose that this book is designed. It is hoped that its appearance may possibly turn more attention of condensed-matter physicists, chemists and material scientists toward this particular phenomenon, and that new methods of non-destructive analysis of matter using this diffraction technique may be developed in the future.
Author : Paul F. Fewster
Publisher : World Scientific
Page : 303 pages
File Size : 20,18 MB
Release : 2000
Category : Science
ISBN : 1860941591
X-ray scattering is used extensively to provide detailed structural information about materials. Semiconductors have benefited from X-ray scattering techniques as an essential feedback method for crystal growth, including compositional and thickness determination of thin layers. The methods have been developed to reveal very detailed structural information concerning material quality, interface structure, relaxation, defects, surface damage, and more.
Author : Mikhail A. Krivoglaz
Publisher : Springer Science & Business Media
Page : 483 pages
File Size : 31,43 MB
Release : 2012-12-06
Category : Science
ISBN : 3642742912
Mikhail Alexandrovich Krivoglaz died unexpectedly when he was preparing the English edition of his two-volume monograph on diffraction and diffuse scatter ing of X-rays and neutrons in imperfect crystals. His death was a heavy blow to all who knew him, who had worked with him and to the world science community as a whole. The application of the diffraction techniques for the study of imperfections of crystal structures was the major field of Krivoglaz' work throughout his career in science. He started working in the field in the mid-fifties and since then made fundamental contributions to the theory of real crystals. His results have largely determined the current level of knowledge in this field for more than thirty years. Until the very last days of his life, Krivoglaz continued active studies in the physics of diffraction effects in real crystals. His interest in the theory aided in the explanation of the rapidly advancing experimental studies. The milestones marking important stages of his work were the first mono graph on the theory of X-ray and neutron scattering in real crystals which was published in Russian in 1967 (a revised English edition in 1969), and the two volume monograph published in Russian in 1983-84 (this edition is the revised translation of the latter).
Author : Yuri Shvyd'ko
Publisher : Springer
Page : 416 pages
File Size : 40,45 MB
Release : 2013-11-11
Category : Science
ISBN : 3540408908
The use of x rays has moved in the forefront of science and technology in the second half of the 20th century. This progress has been greatly stimulated by the advent of synchrotron x-ray sources in the 1960s. The undulator-based synchrotron radiation sources which have appeared in the last decade of the 20th century gave a new impetus to such development. The brilliance of the x-ray sources has increased by 12 orders of magnitude in 40 years and this trend does not show any signs of stagnation. The future x-ray sources of the 21th century based on free-electron lasers driven by linear accelerators will provide sub-picosecond radiation pulses with by many orders of magnitude higher brilliance and full transverse coherence. The x-ray sources of the newest generation offer a possibility to realize more than ever before the great potential of x-ray optics and, as a consequence, to elaborate new sophisticated instrumentation with unprecedented resolution and eventually to move in new directions of research in x-ray technology, materials science, fundamental physics, life sciences, etc.