Smart Structures Theory


Book Description

This book focuses on smart materials and structures, which are also referred to as intelligent, adaptive, active, sensory, and metamorphic. The ultimate goal is to develop biologically inspired multifunctional materials with the capability to adapt their structural characteristics, monitor their health condition, perform self-diagnosis and self-repair, morph their shape, and undergo significant controlled motion.




Dynamics of Smart Structures


Book Description

Dynamics of Smart Structures is a practical, concise and integrated text that provides an introduction to the fundamental principles of a field that has evolved over the recent years into an independent and identifiable subject area. Bringing together the concepts, techniques and systems associated with the dynamics and control of smart structures, it comprehensively reviews the differing smart materials that are employed in the development of the smart structures and covers several recent developments in the field of structural dynamics. Dynamics of Smart Structures has been developed to complement the author's new interdisciplinary programme of study at Queen Mary, University of London that includes courses on emerging and new technologies such as biomimetic robotics, smart composite structures, micro-electro-mechanical systems (MEMS) and their applications and prosthetic control systems. It includes chapters on smart materials and structures, transducers for smart structures, fundamentals of structural control, dynamics of continuous structures, dynamics of plates and plate-like structures, dynamics of piezoelectric media, mechanics of electro-actuated composite structures, dynamics of thermo-elastic media: shape memory alloys, and controller designs for flexible structures.




Adaptronics and Smart Structures


Book Description

Adaptronics is the term encompassing technical fields that have become known internationally under the names "smart materials", "intelligent structures", and "smart structures". Adaptronics contributes to the optimisation of systems and products. It bridges the gap between material and system or product, and incorporates the search for multi-functional materials and elements and their integration in systems or structures. The authors of this book have taken on the task of displaying the current state of the art in this fascinating field. The system components, actuators, sensors and controllers, technical fundamentals, materials, design rules and practical solutions are all described. Selected sample applications are also presented and current development trends are demonstrated.




Structronic Systems: Smart Structures, Devices And Systems (In 2 Parts)


Book Description

This book is concerned with electrostructural systems, particularly the interaction between the control of the structural and electrical (electronic) components. Structronics is a new emerging area with many potential applications in the design of high-performance structures, adaptive structures, high-precision systems, and micro-systems. As structures are increasingly being controlled by electronics, the problems of structural engineering can be separated less and less from those of electronic engineering and control engineering. This graduate-level book fills a gap in the literature by considering these problems while giving an overview of the current state of analysis, modelling and control for structronic systems. It is a coherent compendium written by leading experts in this new research area and gives readers a sophisticated toolbox that will allow them to tackle the modelling and control of smart structures. The inclusion of an extensive, up-to-date bibliography and index makes this volume an invaluable standard for professional reference.Because of the large number of contributions to the present volume, it has been subdivided into two parts, of which this is Part I. This book will be of interest to engineers, materials scientists, physicists and applied mathematicians.The synergistic integration of active (smart) materials, structures, sensors, actuators, and control electronics has redefined the concept of structures from a conventional passive elastic system to an active (life-like) structronic (structure + electronic) system with inherent self-sensing, diagnosis, and control capabilities. Because of its multi-disciplinary nature, the development of structronic systems has attracted researchers and scientists from many disciplines, such as structures, materials, control, electronics, mathematics, manufacturing, electromechanics, and mechanics. In practical applications, this new structronic system can be used as a component of high-performance machines or structural systems, or be an integrated structure itself performing designated function(s).Most common active (smart) materials, such as piezoelectrics, shape-memory alloys, electro- and magneto-strictive materials, and polyelectrolyte gels have been reviewed in Part I. Application examples are also provided and research issues reported on. While the first part focuses primarily on materials and structures, Part II emphasizes control applications and intelligent systems. With the information provided in this two-volume book, scientists and researchers can easily grasp the state of the art of smart materials and structronic systems, and are ready to pursue their own research and development endeavors.




Rigid-Flexible Coupling Dynamics and Control of Flexible Spacecraft with Time-Varying Parameters


Book Description

This book presents the dynamic modeling and attitude control of flexible spacecraft with time-varying parameters. The dynamic characteristics, vibration control methods and attitude stabilization methods for spacecraft are systematically studied in respects of the theoretical modeling, numerical simulation and the ground experiment. Three active control theories in complex mode space are presented for flexible space structures. Optimal slew strategies based on variable amplitudes input shaping methods and coupling control methods are proposed for stabilization of flexible spacecraft. The research provides an important way to solve the problem of high-precision attitude control of flexible spacecraft with time-varying parameters. This book is appropriate for the researchers who focus on the multi-body dynamics, attitude and vibration control of flexible spacecraft.
















Smart Structures


Book Description

Smart (intelligent) structures have been the focus of a great deal of recent research interest. In this book, leading researchers report the state of the art and discuss new ideas, results and trends in 43 contributions, covering fundamental research issues, the role of intelligent monitoring in structural identification and damage assessment, the potential of automatic control systems in achieving a desired structural behaviour, and a number of practical issues in the analysis and design of smart structures in mechanical and civil engineering applications. Audience: A multidisciplinary reference for materials scientists and engineers in such areas as mechanical, civil, aeronautical, electrical, control, and computer engineering.