Dynamics, Geometry, Number Theory


Book Description

"Mathematicians David Fisher, Dmitry Kleinbock, and Gregory Soifer highlight in this edited collection the foundations and evolution of research by mathematician Gregory Margulis. Margulis is unusual in the degree to which his solutions to particular problems have opened new vistas of mathematics. Margulis' ideas were central, for example, to developments that led to the recent Fields Medals of Elon Lindenstrauss and Maryam Mirzhakhani. The broad goal of this volume is to introduce these areas, their development, their use in current research, and the connections between them. The foremost experts on the topic have written each of the chapters in this volume with a view to making them accessible by graduate students and by experts in other parts of mathematics"--




Dynamics and Analytic Number Theory


Book Description

Presents current research in various topics, including homogeneous dynamics, Diophantine approximation and combinatorics.




Ergodic Theory


Book Description

This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.




Holomorphic Dynamics


Book Description

This book, first published in 2000, is a comprehensive introduction to holomorphic dynamics, that is the dynamics induced by the iteration of various analytic maps in complex number spaces. This has been the focus of much attention in recent years, with, for example, the discovery of the Mandelbrot set, and work on chaotic behaviour of quadratic maps. The treatment is mathematically unified, emphasizing the substantial role played by classical complex analysis in understanding holomorphic dynamics as well as giving an up-to-date coverage of the modern theory. The authors cover entire functions, Kleinian groups and polynomial automorphisms of several complex variables such as complex Henon maps, as well as the case of rational functions. The book will be welcomed by graduate students and professionals in pure mathematics and science who seek a reasonably self-contained introduction to this exciting area.




Mathematical Tools for One-Dimensional Dynamics


Book Description

Originating with the pioneering works of P. Fatou and G. Julia, the subject of complex dynamics has seen great advances in recent years. Complex dynamical systems often exhibit rich, chaotic behavior, which yields attractive computer generated pictures, for example the Mandelbrot and Julia sets, which have done much to renew interest in the subject. This self-contained book discusses the major mathematical tools necessary for the study of complex dynamics at an advanced level. Complete proofs of some of the major tools are presented; some, such as the Bers-Royden theorem on holomorphic motions, appear for the very first time in book format. An appendix considers Riemann surfaces and Teichmüller theory. Detailing the very latest research, the book will appeal to graduate students and researchers working in dynamical systems and related fields. Carefully chosen exercises aid understanding and provide a glimpse of further developments in real and complex one-dimensional dynamics.




Dynamics: Topology and Numbers


Book Description

This volume contains the proceedings of the conference Dynamics: Topology and Numbers, held from July 2–6, 2018, at the Max Planck Institute for Mathematics, Bonn, Germany. The papers cover diverse fields of mathematics with a unifying theme of relation to dynamical systems. These include arithmetic geometry, flat geometry, complex dynamics, graph theory, relations to number theory, and topological dynamics. The volume is dedicated to the memory of Sergiy Kolyada and also contains some personal accounts of his life and mathematics.




An Introduction to Symbolic Dynamics and Coding


Book Description

Symbolic dynamics is a mature yet rapidly developing area of dynamical systems. It has established strong connections with many areas, including linear algebra, graph theory, probability, group theory, and the theory of computation, as well as data storage, statistical mechanics, and $C^*$-algebras. This Second Edition maintains the introductory character of the original 1995 edition as a general textbook on symbolic dynamics and its applications to coding. It is written at an elementary level and aimed at students, well-established researchers, and experts in mathematics, electrical engineering, and computer science. Topics are carefully developed and motivated with many illustrative examples. There are more than 500 exercises to test the reader's understanding. In addition to a chapter in the First Edition on advanced topics and a comprehensive bibliography, the Second Edition includes a detailed Addendum, with companion bibliography, describing major developments and new research directions since publication of the First Edition.




Applied Algebraic Dynamics


Book Description

This monograph presents recent developments of the theory of algebraic dynamical systems and their applications to computer sciences, cryptography, cognitive sciences, psychology, image analysis, and numerical simulations. The most important mathematical results presented in this book are in the fields of ergodicity, p-adic numbers, and noncommutative groups. For students and researchers working on the theory of dynamical systems, algebra, number theory, measure theory, computer sciences, cryptography, and image analysis.




An Illustrated Theory of Numbers


Book Description

News about this title: — Author Marty Weissman has been awarded a Guggenheim Fellowship for 2020. (Learn more here.) — Selected as a 2018 CHOICE Outstanding Academic Title — 2018 PROSE Awards Honorable Mention An Illustrated Theory of Numbers gives a comprehensive introduction to number theory, with complete proofs, worked examples, and exercises. Its exposition reflects the most recent scholarship in mathematics and its history. Almost 500 sharp illustrations accompany elegant proofs, from prime decomposition through quadratic reciprocity. Geometric and dynamical arguments provide new insights, and allow for a rigorous approach with less algebraic manipulation. The final chapters contain an extended treatment of binary quadratic forms, using Conway's topograph to solve quadratic Diophantine equations (e.g., Pell's equation) and to study reduction and the finiteness of class numbers. Data visualizations introduce the reader to open questions and cutting-edge results in analytic number theory such as the Riemann hypothesis, boundedness of prime gaps, and the class number 1 problem. Accompanying each chapter, historical notes curate primary sources and secondary scholarship to trace the development of number theory within and outside the Western tradition. Requiring only high school algebra and geometry, this text is recommended for a first course in elementary number theory. It is also suitable for mathematicians seeking a fresh perspective on an ancient subject.