Dynamics at Surfaces: Understanding Energy Dissipation and Physicochemical Processes at the Atomic and Molecular Level


Book Description

Energy release to solid interfaces following chemical reactions is ubiquitous in a vast range of phenomena. Energy dissipation and dynamical disorder (surface entropy), surface friction and molecular diffusion control the rates of heterogeneous catalytic reactions, the efficiency of novel technology, lubrication as well as materials growth including self-assembly and nano-structures. Yet we understand little about the underlying nature of these mechanisms. Fundamentally, energy dissipation including interactions with phonons and electron-hole pairs determines the lifetime of molecular vibrations and rotations as well as the decoherence rate of quantum states. These processes form a central point for many aspects in physical chemistry, are embedded in the mechanisms that control surface dynamical processes and are critical factors in catalysis. They are equally relevant for physicochemical processes in the Earth's atmosphere and astrochemistry occurring on cosmic dust grains.




Properties and Functionalization of Graphene


Book Description

Properties and Functionalization of Graphene: Computational Chemistry Approaches, Volume 21 shows how computational chemistry can be used to explore molecular interactions when modeling and manipulating graphene's properties for varied applications. Sections compare results and experimental evidence, cover the experimental techniques employed in the functionalization of graphene and associated challenges, and delve into the properties of functionalized graphene. Under the guidance of its expert editor, this book shares insights from a global team of specialists, making it an authoritative, practical guide for all those studying, developing or applying graphene across a whole range of fields. - Provides practical insights into the latest computational approaches used in modeling the properties of functionalized graphene - Includes detailed methods and step-by-step guidance on key processes that are supported throughout with examples - Highlights the electronic properties of functionalized graphene




Encyclopedia of Chemical Processing (Online)


Book Description

This second edition Encyclopedia supplies nearly 350 gold standard articles on the methods, practices, products, and standards influencing the chemical industries. It offers expertly written articles on technologies at the forefront of the field to maximize and enhance the research and production phases of current and emerging chemical manufacturing practices and techniques. This collecting of information is of vital interest to chemical, polymer, electrical, mechanical, and civil engineers, as well as chemists and chemical researchers. A complete reconceptualization of the classic reference series the Encyclopedia of Chemical Processing and Design, whose first volume published in 1976, this resource offers extensive A-Z treatment of the subject in five simultaneously published volumes, with comprehensive indexing of all five volumes in the back matter of each tome. It includes material on the design of key unit operations involved with chemical processes; the design, unit operation, and integration of reactors and separation systems; process system peripherals such as pumps, valves, and controllers; analytical techniques and equipment; and pilot plant design and scale-up criteria. This reference contains well-researched sections on automation, equipment, design and simulation, reliability and maintenance, separations technologies, and energy and environmental issues. Authoritative contributions cover chemical processing equipment, engineered systems, and laboratory apparatus currently utilized in the field. It also presents expert overviews on key engineering science topics in property predictions, measurements and analysis, novel materials and devices, and emerging chemical fields. ALSO AVAILABLE ONLINE This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for both researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]




Encyclopedia of Chemical Processing


Book Description

Collecting information of vital interest to chemical, polymer, mechanical, electrical, and civil engineers, as well as chemists and chemical researchers, this "Encyclopedia "supplies nearly 350 articles on current design, engineering, science, and manufacturing practices-offering expertly written articles on technologies at the forefront of the field to maximize and enhance the research and production phases of current and emerging chemical manufacturing practices and techniques.




Eurasian Soil Science


Book Description










Nanotechnology in Drug Discovery


Book Description

This book provides a compressive overview of nanotechnology in modern drug discovery for students and researchers. The book starts with the fundamentals of nanotechnology followed by nanomaterials in pharmaceutical drug design, drug delivery applications, regulatory aspects, formulation and nanoparticle biotransformation. It provides a step by step guide through the drug development process while conveying information about the benefits of nanomaterials for therapy. The book concludes with perspective on the future of nanotechnology-based drug discovery, summarizing current knowledge on nanotherapeutics and translational medicine. Key Features - Explains the fundamentals of nanotechnology in drug discovery - Includes up-to-date information on modern nanopharmaceutical manufacturing, nanomaterials, and nanoparticle-based drug therapy - Practice questions for learners and a list of references for advanced readers for each chapter.




Encyclopedia of Surface and Colloid Science -


Book Description

This comprehensive reference collects fundamental theories and recent research from a wide range of fields including biology, biochemistry, physics, applied mathematics, and computer, materials, surface, and colloid science-providing key references, tools, and analytical techniques for practical applications in industrial, agricultural, and forensic processes, as well as in the production of natural and synthetic compounds such as foods, minerals, paints, proteins, pharmaceuticals, polymers, and soaps.




Chemical Bonding at Surfaces and Interfaces


Book Description

Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. - Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts - This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component - Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing - Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces