Dynamics of Extremal Black Holes


Book Description

This Brief presents in a self-contained, non-technical and illustrative fashion the state-of-the-art results and techniques for the dynamics of extremal black holes. Extremal black holes are, roughly speaking, either maximally rotating or maximally charged. Astronomical observations suggest that near-extremal (stellar or supermassive) black holes are ubiquitous in the universe. The book presents various recently discovered characteristic phenomena (such as the horizon instability) that have enhanced our understanding of the dynamics of extremal black holes. The topics should be of interest to pure mathematicians, theoretical physicists and astronomers. This book provides common ground for communication between these scientific communities.




Black Holes in Higher Dimensions


Book Description

The first book devoted to black holes in more than four dimensions, for graduate students and researchers.




Towards Quantum Gravity


Book Description

The aim of this book is to give graduate students an overview of quantum gravity but it also covers related topics from astrophysics. Some well-written contributions can serve as an introduction into basic conceptual concepts like time in quantum gravity or the emergence of a classical world from quantum cosmology. This makes the volume attractive to philosophers of science, too. Other topics are black holes, gravitational waves and non-commutative extensions of physical theories.




Proceedings of the Conference in Honour of Murray Gell-Mann's 80th Birthday


Book Description

The Conference on Quantum Mechanics, Elementary Particles, Quantum Cosmology and Complexity was held in honour of Professor Murray Gell-Mann's 80th birthday in Singapore on 24?26 February 2010. The conference paid tribute to Professor Gell-Mann's great achievements in the elementary particle physics. This notable birthday volume contains the presentations made at the conference by many eminent scientists, including Nobel laureates C N Yang, G 't Hooft and K Wilson. Other invited speakers include G Zweig, N Samios, M Karliner, G Karl, M Shifman, J Ellis, S Adler and A Zichichi. About Murray Gell-Mann Murray Gell-Mann, born September 15, 1929, won the 1969 Nobel Prize in physics for his work on the theory of elementary particles. His contributions span the entire history of particle physics, from the early days of the particle zoo to the modern day QCD. Along the way, even as he proposed new quantum numbers to bring order into the zoo, he had fun in naming them. And thus was born Strangeness, Flavor, Hadrons, Baryons, Leptons, the Eightfold Way, Color, Quarks, Gluons and, with Harald Fritzsch, the standard field theory of strong interactions, Quantum Chromodynamics (QCD). He also proposed with Richard Feynman the V-A theory of beta decay. Gell-Mann discovered the Current Algebra, proposed (with Levy) the sigma model of pions and the see-saw mechanism for the neutrino masses.




Holographic Entanglement Entropy


Book Description

This book provides a comprehensive overview of developments in the field of holographic entanglement entropy. Within the context of the AdS/CFT correspondence, it is shown how quantum entanglement is computed by the area of certain extremal surfaces. The general lessons one can learn from this connection are drawn out for quantum field theories, many-body physics, and quantum gravity. An overview of the necessary background material is provided together with a flavor of the exciting open questions that are currently being discussed. The book is divided into four main parts. In the first part, the concept of entanglement, and methods for computing it, in quantum field theories is reviewed. In the second part, an overview of the AdS/CFT correspondence is given and the holographic entanglement entropy prescription is explained. In the third part, the time-dependence of entanglement entropy in out-of-equilibrium systems, and applications to many body physics are explored using holographic methods. The last part focuses on the connection between entanglement and geometry. Known constraints on the holographic map, as well as, elaboration of entanglement being a fundamental building block of geometry are explained. The book is a useful resource for researchers and graduate students interested in string theory and holography, condensed matter and quantum information, as it tries to connect these different subjects linked by the common theme of quantum entanglement.




Progress in String Theory and M-Theory


Book Description

Recent developments in supersymmetric field theory, string theory, and brane theory have been revolutionary. The main focus of the present volume is developments of M-theory and its applications to superstring theory, quantum gravity, and the theory of elementary particles. Topics included are D-branes, boundary states, and world volume solitons. Anti-De-Sitter quantum field theory is explained, emphasising the way it can enforce the holography principle, together with the relation to black hole physics and the way Branes provide the microscopic interpretation for the entropy of black holes. Developments in D-branes within type-I superstring and related theories are described. There are also possible phenomenological implications of superstring theory that would lie within the range of quantum gravity effects in the future generation of accelerators, around 1 TeV.




The Sixth Canadian Conference on General Relativity and Relativistic Astrophysics


Book Description

This volume is the refereed proceedings of the Sixth Canadian Conference on General Relativity and Relativistic Astrophysics held in May 1995 at the University of New Brunswick. The book includes invited talks and contributed talks and posters including state-of-the-art reviews of many of the most recent important developments in gravitational physics. This book would serve as a good supplement to standard texts on the topic. It features: review articles in key areas - black holes, numerical relativity, etc.; contributions covering most of gravitational physics; useful articles for students who wish to begin exploring the issues discussed; and, invited talks given by researchers known for their ability to communicate their expertise.




Black Holes


Book Description




Supersymmetric Mechanics - Vol. 3


Book Description

This is the third volume in a series of books on general topics in supersymmetric mechanics. This collection presents material from the well established international and annual INFN-Laboratori Nazionali di Frascati Winter School on the Attractor Mechanism.




A Relativist's Toolkit


Book Description

This 2004 textbook fills a gap in the literature on general relativity by providing the advanced student with practical tools for the computation of many physically interesting quantities. The context is provided by the mathematical theory of black holes, one of the most elegant, successful, and relevant applications of general relativity. Among the topics discussed are congruencies of timelike and null geodesics, the embedding of spacelike, timelike and null hypersurfaces in spacetime, and the Lagrangian and Hamiltonian formulations of general relativity. Although the book is self-contained, it is not meant to serve as an introduction to general relativity. Instead, it is meant to help the reader acquire advanced skills and become a competent researcher in relativity and gravitational physics. The primary readership consists of graduate students in gravitational physics. It will also be a useful reference for more seasoned researchers working in this field.