Non-Equilibrium Phase Transitions


Book Description

“The importance of knowledge consists not only in its direct practical utility but also in the fact the it promotes a widely contemplative habit of mind; on this ground, utility is to be found in much of the knowledge that is nowadays labelled ‘useless’. ” Bertrand Russel, In Praise of Idleness, London (1935) “Why are scientists in so many cases so deeply interested in their work ? Is it merely because it is useful ? It is only necessary to talk to such scientists to discover that the utilitarian possibilities of their work are generally of secondary interest to them. Something else is primary. ” David Bohm, On creativity, Abingdon (1996) In this volume, the dynamical critical behaviour of many-body systems far from equilibrium is discussed. Therefore, the intrinsic properties of the - namics itself, rather than those of the stationary state, are in the focus of 1 interest. Characteristically, far-from-equilibrium systems often display - namical scaling, even if the stationary state is very far from being critical. A 1 As an example of a non-equilibrium phase transition, with striking practical c- sequences, consider the allotropic change of metallic ?-tin to brittle ?-tin. At o equilibrium, the gray ?-Sn becomes more stable than the silvery ?-Sn at 13. 2 C. Kinetically, the transition between these two solid forms of tin is rather slow at higher temperatures. It starts from small islands of ?-Sn, the growth of which proceeds through an auto-catalytic reaction.




Phase Transition Dynamics


Book Description

Phase Transition Dynamics, first published in 2002, provides a fully comprehensive treatment of the study of phase transitions. Building on the statistical mechanics of phase transitions, covered in many introductory textbooks, it will be essential reading for researchers and advanced graduate students in physics, chemistry, metallurgy and polymer science.




Thermodynamics of Finite Systems and the Kinetics of First-Order Phase Transitions


Book Description

This booklet is devoted to the thermodynamic and kinetic description of first-order phase transitions. In general, the matter of the world exists in different phases. Normally phase ctlanges take place in ther­ modynamic equilibrium, which will be considered here. Typically,the system is rapidly quenched from a one-phase thermal equilibrium state to a nonequilibrium situation. During the so-ca lIed equilibrium phase transformation process the quenched supersaturated system evolves from the nonequilibrium state to an equilibrium one which consists of two coexisting phases. In aseries of books on phase transitions and critical phenomena (DDMB, GREEN, lEBDWITZ, 1972 - 19B3) an immense amount of material to different aspects of ttlis topic is summarized. The other type of phase transitions takes place in systems far from equilibrium. Due to 'the nonequi1ibrium boundary conditions and the flu­ xes from the environment into the system the final state of this so­ called nonequilibrium phase transition is a stable nonequilibrium si­ tuation. Such interesting processes (e. g. pattern formation, multista­ bi1ity) do not appear only in physics but also in chemistry, meteorolo­ gy, biology and many areas of engineering. Concerning questions in this context we recommend the reader to the monographs by HAKEN (197B), and EBElING, FEISTEl (1982). An overview of the problems of recent interest in this field is given in the Proceedings of the Third International Conference on Irreversible Processes and Dissipative Structures, edited by EBElING and Ul8RICHT (1986).







Fluctuations, Instabilities, and Phase Transitions


Book Description

This book contains the papers presented at the NATO Advanced Study Institute held at Geilo, Norway, 11th - 20th April 1975. The institute was the third in a row devoted to phase transitions. The previous two dealt with 2nd- and 1st-order transitions in equilibrium systems and the proceedings have been published.i~ In order to make an overlap wi th those institutes, the first part of this institute was devoted to 1st -or der transitions with an emphasis on the problems of metast abi l i t y and instability en countered i n spinodal decomposition, nucleation etc. The main topic was, however, that of non-equilibrium systems, and the present institute was to our knowledge the first one devoted to the physics of such systems. The discovery of the analogy between phase transitions in equilibrium systems and instabilities in non-equilibrium systems was first made by Rolf Landauer in 1961 and later independently by others. The analogy was first pointed out for electronic devices (tunnel diodes, Gunn oscillators, lasers, etc. ) and the treatment of hydrodynamic instabilities followed later.




Phase Transition Dynamics


Book Description

This book is an introduction to a comprehensive and unified dynamic transition theory for dissipative systems and to applications of the theory to a range of problems in the nonlinear sciences. The main objectives of this book are to introduce a general principle of dynamic transitions for dissipative systems, to establish a systematic dynamic transition theory, and to explore the physical implications of applications of the theory to a range of problems in the nonlinear sciences. The basic philosophy of the theory is to search for a complete set of transition states, and the general principle states that dynamic transitions of all dissipative systems can be classified into three categories: continuous, catastrophic and random. The audience for this book includes advanced graduate students and researchers in mathematics and physics as well as in other related fields. This second edition introduces a unified theory for topological phase transitions, provides a first-principle approach to statistical and quantum physics, and offers a microscopic mechanism of quantum condensates (Bose-Einstein condensation, superfluidity, and superconductivity). Reviews of first edition: “The goals of this interesting book are to derive a general principle of dynamic transitions for dissipative systems and to establish a systematic dynamic transition theory for a wide range of problems in the nonlinear sciences. ... The intended audience for this book includes students and researchers working on nonlinear problems in physics, meteorology, oceanography, biology, chemistry, and the social sciences.” (Carlo Bianca, Mathematical Reviews, December, 2014) “This is a clearly written book on numerous types of phase transitions taken in a broad sense when a dynamical dissipative system transforms from one physical state into another. ... The book is a very useful literature not only for the professionals in the field of dynamic systems and phase transitions but also for graduate students due to its interdisciplinary coverage and state-of-the-art level.” (Vladimir Čadež, zbMATH, Vol. 1285, 2014)